webkonspect.com — сайт, с элементами социальной сети, создан в помощь студентам в их непростой учебной жизни.
Здесь вы сможете создать свой конспект который поможет вам в учёбе.
Чем может быть полезен webkonspect.com:
- простота создания и редактирования конспекта (200 вопросов в 3 клика).
- просмотр конспекта без выхода в интернет.
- удобный текстовый редактор позволит Вам форматировать текст, рисовать таблицы, вставлять математические формулы и фотографии.
- конструирование одного конспекта совместно с другом, одногрупником.
- webkonspect.com — надёжное место для хранения небольших файлов.
Видео:УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать
Преемственность в процессе обучения школьников решению уравнений
Разделы: Математика
Данная работа посвящена актуальной на сегодняшний день проблеме преемственности в обучении математики уравнениям. В работе будут рассмотрены способы решения уравнений в начальном звене и способы решения уравнений в 5-ом классе.
Основой для рассмотрения этой проблемы в данном аспекте послужил тот факт, что решение уравнений всегда было и до сих пор остается острой проблемой в методике математики, так как, несмотря на напряженные поиски и безусловные достижения в этой области, степень усвоения материала учащимися невысока. В период обучения в начальной школе формируются базовые знания, умения и навыки, на основе которых будет строиться дальнейшее изучение математики. Начальная школа занимает решающее место: проблема преемственности может не возникнуть только в случае, когда правильно организованно начальное обучение. Другими словами, на начальную школу возлагается высочайшая ответственность за все дальнейшее обучение математики. Вот почему так важно дать учащимся наиболее полную информацию о сущности уравнения и показать им пути его решения.
Несомненно, что учащимся начальных классов, у которых в силу возраста еще не сформировано абстрактное мышление, именно тема «Решение уравнений» может показаться достаточно трудной, в отличии от учащихся 5, 6 классов.
Главной целью данной работы является сравнение наиболее эффективных приемов обучения решению уравнений в начальной школе и в средней школе (5, 6 класс).
Для достижения цели исследования потребовалось решить следующие конкретные задачи:
Выделить и изучить различные пути реализации преемственности в процессе обучения.
Рассмотреть методические концепции обучения решению уравнений авторов программ традиционного обучения на основе преемственности.
Разработать фрагменты уроков упражнений, где наглядно можно проследить способы решения уравнений в 1–6-х классах на основе преемственности.
Методологическая и теоретическая основа работы.
Теория и методология исследования основывается на концепции современной методики обучения математики в школе, представленной в работах Л. Г. Петерсон.
Научно-практическая значимость работы определяется тем, что теоретические положения, конкретный материал, конспекты уроков, предложенные упражнения, выводы проведенного исследования могут быть использованы учителями начальных классов, учителями математики.
Глава I. Преемственность в процессе обучения.
Преемственность в процессе обучения.
Преемственность часто понимают по-разному. Одни рассматривают ее как связь между отдельными предметами в процессе обучения (физика и математика, математика и черчение), другие – как простое использование ранее приобретенных знаний при дальнейшем изучении того же самого предмета, третьи – как постоянство и единообразие требований, предъявляемых учащимся при переходе из класса в класс.
Во всех этих случаях преемственность понимается как некоторая связь. Однако представляется эта связь довольно поверхностной, не выражающей основных характерных особенностей преемственности. Более того, часто эта связь отражается во второстепенных деталях, не затрагивающих существа процесса обучения. А иногда эту связь сводят к установившимся традициям. Тогда как связь, называемая преемственностью, обладает важными для процесса развития особенностями, имеющими большое значение для всего процесса обучения в школе. По определению, которое можно найти в Большой Советской Энциклопедии (т. 20), преемственность представляет “связь между явлениями в процессе развития, когда новое, сменяя старое, сохраняет в себе некоторые его элементы. Преемственность есть одно из проявлений диалектики закона отрицания и закона перехода количественных изменений в качественные”.
Правильное понимание преемственности может принести пользу при организации всего процесса обучения в школе и его отдельных этапов. Более глубокое понимание проблемы преемственности может стать серьезным оружием в методологических исследованиях. Оно поможет лучше понять многие вопросы, и в частности такие, как вопрос о линейном и концентрическом построении курсов, вопрос о повторении в процессе обучения и другие.
Целесообразно такое построение курса, при котором повторение способствующее преемственности при изучении понятия или системы понятий, дает возможность проявиться основным качествам преемственности. На каждом новом этапе это не будет повторением тех же самых упражнений, выполняемых теми же способами. В упражнениях на повторение непременно должно появиться новое, отмирать старое, несущественное в соответствии с повышением уровня образования учащихся. Таким образом, преемственность требует глубокого методического изучения.
Проведенный анализ дидактических и методологических исследований, который не только позволил осмыслить многоаспектность проблемы преемственности обучения, но и помог решить одну из задач исследования.
Идеи преемственности обучения как опоры последующих знаний на предыдущие, закрепления предыдущих последующими, установление причинных связей между явлениями находили отражение в трудах русских и зарубежных педагогов.
В дидактических исследованиях можно выделить различные точки зрения на роль преемственности в учебном процессе. М. А. Данилов рассматривает преемственность как условие развития самого процесса обучения [8].
Преемственность как составная часть принципа систематичности и последовательности в обучении характеризуется Ю. К. Бабанским [2]. Ю. К. Бабанский считает координацию требований преподавателей различных учебных предметов к учащимся, соблюдение преемственности в изучении не только отдельных тем, но и учебных предметов, преемственности обучения в младших, средних, старших классах.
На необходимость обеспечения преемственности в «учении» указывал Ш. И. Ганелин [7]. Говоря о преемственности он отмечал, что это «такая опора на пройденное, такое использование и дальнейшее развитие у учащихся знаний, умений и навыков, при которых у учащихся создаются разнообразные связи, раскрываются основные идеи курса, взаимодействуют старые и новые знания, в результате чего у них образуется система прочных и глубоких знаний» [7 с. 4].
Важные для современного этапа выводы содержатся в работе Н. А. Цирулик «Дидактические условия успешного осуществления преемственности в обучении между начальными и средними классами» (1981 г.). Автор понимает преемственность в обучении как «связь между этапами работы учителя по развитию личности ученика, достигаемую тем, что в процессе обучения учитывается – не игнорируется, а используется – достигнутый учениками уровень развития, образования в целях дальнейшего непрерывного совершенствования.
По мнению автора, «преемственность будет между ступенями успешной», если: – при определении целей обучения выявляются различия, а также закономерные противоречия между требованиями к усвоению знаний и развитию, предъявляемыми к ученикам на разных этапах обучения;
– учебный материал преподносится в возможно более широких и разносторонних связях, которые обеспечиваются логической последовательностью изложения материала, применением познавательных задач, вопросов, упражнений на сравнение, сопоставление, классификацию, способствующих переосмыслению знаний и осознанию учащимися трансформации знаний, их усложнения;
– проводится разностороннее выявление результатов, полученных в ходе усвоения, для учета их в основном цикле процесса обучения.
Анализ дидактических работ по проблеме преемственности позволяет констатировать, что при выявлении общих закономерностей процесса обучения дидактическая наука придавала большое значение понятию преемственности, которая рассматривалась как необходимое условие формирования у учащихся прочных знаний, умений и навыков.
С методологических позиций преемственность – это связь между различными этапами, ступенями развития как бытия, так и познания, сущность, которая состоит в сохранении тех ил иных элементов целого или отдельных сторон его организации при изменении целого как системы, т.е. при переходе из одного состояния в другое. Связывая настоящее с прошлым и будущим, преемственность тем самым обуславливает устойчивость целого (Э. А. Баллер) [3]
Из предложенной трактовки преемственности следует вывод важный для педагогики: развитие и преемственность – два взаимосвязанных и взаимозависимых процесса, они не существуют один без другого. Одновременно при анализе развивающихся объектов необходимо рассматривать процесс преемственности, обеспечивающий целостность объекта при его изменении. Поэтому, с нашей точки зрения, при характеристике преемственности в обучении математике необходимо выделять:
развивающееся целое, рассматриваемое в трех временных промежутках (прошлое, настоящее, будущее);
противоречия, возникающие в ходе развития объекта;
способы устранения противоречий, позволяющие этому целому не разрушиться, т.к. необходимо указать способ установления преемственной связи.
Рассматривая педагогический аспект проблемы преемственности, исследователи исходят из того, что под преемственностью в обучении следует понимать обеспечение связи между отдельными сторонами, этапами и ступенями обучения, расширение и углубление знаний, приобретаемых на предшествующих этапах обучения, поступательное развертывание всего учебного процесса в соответствии с содержанием, формами и методами обучения. (А. В. Батаршев) [4]
В данной трактовке преемственности неясно о каком развивающемся объекте идет речь. Большинство исследователей данной проблемы, говоря о преемственности в обучении, основной акцент делают на развитие системы знаний в процессе обучения. Но в проводимых ими рассуждениях трудно определить, о какой системе идет речь: системе знаний, которые ученик должен освоить, или системе знаний, которой владеет ученик. Вероятно, неявно идет речь о развивающейся системе знаний в сознании ученика.
Развитие системы знаний связано с разрешением противоречий. В литературе описываются разные виды противоречий, характерные для процесса обучения. Одни противоречия носят методологический характер (между непрерывным характером процесса познания и дискретным характером процесса учения). Другие носят психологический характер, связанные с наличным у школьника уровнем овладения знаниями, умениями, навыками и выдвигаемыми ходом обучения новыми задачами (коротко можно сформулировать как противоречие между «могу» и «надо»). Заметим, что при рассмотрении противоречий в обучении остается неясным вопрос, кто формулирует противоречия, и кто их разрешает. Из контекста становится понятным, что речь идет о противоречиях, которые возникают у ученика в процессе обучения, а разрешает эти противоречия учитель, ученик в этом процессе пассивен. Противоречие в сознании ученика связано с возникновением трудностей в усвоении учебного материала. Для развития ученика важно, чтобы он осознавал процесс преодоления возникших затруднений. Именно в ходе процесса преодоления трудностей учащийся осознает границы своего знания и незнания, что создает «поле преемственности». В качестве способов реализации преемственности в обучении исследователи называют обобщение материала, систематизацию знаний, установление внутрипредметных и межпредметных связей, моделирование, проведение аналогий и т.д. Практика работы школы показывает, что использование указанных приемов чаще всего не связывается с выявлением и разрешением противоречий, что приводит к частичному решению проблемы. Как было сказано выше, в связи с особенностью процесса обучения, где взаимодействуют два субъекта: «учитель» и «ученик», – в проблеме преемственности в обучении необходимо рассматривать два аспекта: внешний (деятельность учителя по установлению преемственности связей) и внутренний (организация процесса обучения, обеспечивающая установление преемственных связей самим учеником). Проблема преемственности в традиционном обучении обычно решается в большей степени с точки зрения внешней преемственности, поэтому больший акцент делается на установление преемственных связей при переходе учеников с одного этапа обучения на другой. Проблема преемственности в развивающем обучении обращается ко второму аспекту этой проблемы, связанной с установлением преемственных связей в процессе учебного познания. В психологической литературе названо одно из направлений в решении поставленной проблемы – поиск сквозных умений, пронизывающих весь курс учебного предмета (А. А. Люблинская) [14].
Данное направление не нашло дальнейшей разработки в самой психологии и, кроме того, требует переноса предлагаемого решения проблемы преемственности на методический уровень.
На методическом уровне основным предметом исследования проблемы преемственности явилось содержание математического образования, так как оно занимает ведущее положение по отношению ко всем другим компонентам процесса обучения.
Проблема преемственности в обучении математике не нова, и можно выделить этапы ее развития. Впервые наиболее остро эта проблема обсуждалась в 50-е гг. XX столетия. В существующей тогда десятилетней школе начальная школа имела самостоятельное значение для учащихся. Осуществлялся переход от обязательного начального четырехлетнего образования к обязательному семилетнему. Несогласованность между четвертыми и пятыми классами выражалась, главным образом, в различии методов обучения. К тому времени сложилась специфическая методика изучения арифметики в начальной школе, которая во многом расходилась с методикой преподавания курса арифметики в V кл. Довольно значительными были расхождения в преподнесении теоретических вопросов. В учебниках начальной школы почти не было обоснований правил, дети обучались в основном на задачах, а в V и VI классах удельный вес теоретических знаний резко увеличивался. Сильно отличались и формы затеей в тетрадях, требования к степени подробности в изложении решений текстовых задач.
Во второй раз проблему преемственности пытались особенно внимательно решать в начале 70-х гг., когда была введена трехлетняя начальная школа. В учебниках и методических руководствах была достигнута известная согласованность: начальная школа перестала быть обособленным звеном. Однако в формулировках требований к математической подготовке учащихся, оканчивающих начальную школу, и требований к знаниям, умениям и навыкам ребят, приступающих к учебе в IV классе, были допущены расхождения, которые оказывали негативное влияние в течение длительного времени и чувствуются и поныне.
В процессе реформы общеобразовательной школы, когда она стала одиннадцатилетней и обучение начинается с 6 лет, проблема преемственности возникла в третий раз. Для успешного решения проблемы преемственности на современном этапе необходимо уже сейчас начать экспериментальную подготовительную работу в этом направлении. Прежде всего следует полностью согласовать требования к математической подготовке учащихся, сформулированные в программах начальной и средних школ.
Обсуждая проблему преемственности, обычно выделяют содержание учебного материала предыдущего класса, которое нужно помнить к началу следующего года. Но важно и другое – согласование методов обучения, обеспечивающих достаточную подготовку учащихся младших классов к восприятию обобщенных фактов, правил, законов, постепенную адаптацию школьников к дедуктивному методу изложения.
В настоящее время в начальной школе достаточно широкое распространение уже получили учебники, качественно отличающиеся друг от друга и методически и по конкретному вложенному в них содержанию.
Наиболее массовые в настоящее время учебники для I-IV классов отражают вполне традиционный взгляд на формирование вычислительных навыков как важнейшую задачу обучения математике (во всяком случае, в начальной школе) и следуют существовавшей в 60-х гг. бурбакистской моде на раннюю алгебраизацию. Но в ряде других учебников, относящихся, как сейчас принято говорить, к развивающей системе обучения, реализован гораздо более широкий спектр представлений о содержания и сущности математики, а вообще о математической деятельности в формировании личности.
Учебники перестали сводиться, по существу, к чистой арифметике с элементами алгебры и геометрии. Однако в некоторых учебниках развивающая функция обучения математике реализуется весьма экстравагантно. Например, при изучении чисел больший акцент делается на формировании общего понятия числа и меньший – на умениях общаться с числами.
Существенные различия имеются и в конкретном математическом содержании. В некоторых новых учебниках для начальной школы начинается изучение дробей, а алгебраическое содержание включает, например, решение линейных уравнений с переменной в обеих частях.
Написанные авторами с различными психологическими, педагогическими и дидактическими представлениями, они в неполной мере учитывают потребности обучения математике на следующих ступенях, а следовательно, и вытекающие из нее и из современной концепции школьного математического образования последствия для обучения предмету, в частности иерархию целей и задач математики как предмета общего образования.
Многие реализованные в новых учебниках для начальное школы подходы не удовлетворяют учителей основной школы – или несоответствием современным представлениям о целях школьного, математического образования, новое системе работы, или, наоборот, выходящими за допустимые пределы новациями. Эта неудовлетворенность чаще всего имеет, естественно, субъективный характер, однако реальное решение проблемы преемственности в V классе зависит в настоящее время прежде всего от учителя, от его мнения, будь оно сколь угодно субъективным.
Поэтому новые учебники для начальной школы в настоящее время, быть может за несколькими исключениями, не имеют продолжения в основной школе. Поэтому вопросы преемственности в обучении математике между начальной и основной ступенями являются чрезвычайно важными на современном этапе.
Организация процесса обучения математики на основе преемственности.
Для исследования проблемы с практической точки зрения мы рассмотрели, как решается проблема преемственности при переходе учеников от одной ступени обучения к другой: начальная школа – 5–6-е классы.
Преемственность в обучении математике многие авторы учебников в большей мере понимают как последовательное изложение материала, не предполагают работу над разрешением противоречий, возникающих в процессе овладения математическими знаниями и умениями.
В большинстве случаев в литературе проблема преемственности связывается с переходом учеников из начальной школы в основную, а с методической точки зрения – с переходом учеников от одного учителя к другому (внешняя преемственность).
Пятый класс – это переломный этап в жизни и развитии детей, так как они переходят к предметному обучению. Учитель в начальной школе заинтересован в успешном овладении знаниями по всем основным школьным предметам в равной степени. Данный переходный период, как правило, сопровождается появлением разного рода трудностей, возникающих не только у школьников, но и у педагогов.
Какой ребенок готов к переходу в среднюю школу с точки зрения психологов?
Для дальнейшего успешного обучения у ребенка должны быть сформированы:
теоретическое мышление в доступных учащимся этого возраста формах – рефлексия;
способность к саморегуляции;
овладение структурными компонентами учебной деятельности.
Важно учитывать и то, что к началу подросткового периода учебная деятельность теряет свое ведущее значение, хотя она продолжает оставаться основной деятельностью школьников. Рубеж 3–4-го классов, по свидетельству многих психологов и педагогов, характеризуется значительным снижением интереса к учебе в школе, к самому процессу обучения. Симптомами можно считать отрицательное отношение к школе в целом, к обязательности ее посещения, нежелания выполнять учебные задания, конфликты с учителями, нарушение правил поведения в школе. Но эти негативные явления можно связывать и с особенностями работы конкретных педагогов.
Обычно в качестве критерия возникновения проблемы преемственности называется падение успешности обучения математике. Нами было проведено исследование изменения отметки по математике при переходе из начальной школы в 5 класс. Анализировалось: годовая отметка за начальную школу, отметка за первую четверть в 5 классе, итоговая отметка за 5 класс. Было исследовано движение отметок у 105 учеников разных школ. Исследование показало, сто при переходе учеников из начальной школы в основную у 20% учеников происходит снижение отметки по математике.
Эти данные свидетельствуют о том, что наличие проблемы преемственности при обучении математике связано не только с переходом от одного учителя к другому (на что сейчас в практике обучения делается высокий акцент), но и с переходом к изучению материала более высокого уровня абстракции, то есть с разрешением противоречия между высоким уровнем абстрактности математики и недостаточно развитым для ее усвоения абстрактным мышлением.
Наблюдения за характером изменений в подготовленности и развитии выпускников начальных классов в последние годы показывают существование ряда достаточно распространенных проблем, сказывающихся на успешности усвоения школьниками курса математики на следующем этапе. Далее в таблице перечислены некоторые из таких проблем, отмечена динамика по каждой проблеме, названы возможные пути их решения или коррекции.
Тенденции: – ухудшение ситуации,
– улучшение ситуации,
– стабильное положение
Проблема
Тенденция
Возможности разрешения
Организационно-психологические
Недостаточная наполненность урока учебным материалом, неоправданно медленный темп урока, отсутствие материалов для “сильного” ученика, перенос основной тяжести усвоения курса на домашнюю работу
Уменьшение доли фронтальных бесед и др. малоэффективных методов работы на уроке, использование раздаточных дидактических материалов, уменьшение пауз в работе детей
Недостаточно организованное и четкое начало урока, окончание урока, выделение дополнительного – сверх отведенных 45 мин – времени на выполнение письменных проверочных работ, из-за чего дети не приучаются быстро включаться в работу, эффективно и быстро работать
Приучить детей начинать работу на уроке по звонку, быстро включаться в работу, не давать отдельным детям дополнительного времени на выполнение контрольных и др. проверочных работ, заканчивать урок также со звонком с урока
Стойкая привычка у детей к неумеренной помощи родителей при выполнении домашних заданий, творческих работ
Разъяснение родителям наносимого ущерба интеллектуальному развитию их ребенка, включение в уроки заданий, контролирующих степень самостоятельности школьников в выполнении домашних заданий
Проблема
Тенденция
Возможности разрешения
Бедность арсенала и однообразие используемых методов обучения, несоответствие методического багажа учителя реальным учебным возможностям детей
Распространение опыта успешного обучения детей в современных условиях (школьным методическим объединениям учителей начальных классов и математики, кафедрам полезно создавать “видеобиблиотеки” методов обучения для ознакомления с лучшим опытом)
Пассивность большинства учащихся в процессе обучения
Использование форм и методов организации занятий, требующих от каждого ученика активного и осознанного участия (в т. ч. парной, групповой работы)
Несформированность у учащихся представления об отличном устном ответе, ответе у доски на уроке математики (эталоне ответа)
Учителям математики совместно с учителями начальной школы определиться в требованиях к ответу ученика и постепенно разъяснять детям эти требования, учитывать их, оценивая ответы на уроке
Привычка у детей получать отметки за любое – самое малое – действие, в т. ч. за краткие или односложные, невразумительные ответы
Добиваться от детей развернутых, полных ответов, четкой и грамотной речи; не допускать выставления необоснованно высоких отметок за неполные ответы
Проблема
Тенденция
Возможности разрешения
Обедненная (вплоть до конца обучения в начальной школе) речь учителя, отсутствие динамики в использовании лексики от 1 к 3-4 классам, “сюсюканье”
Полезно создание и внедрение учителями математики совместно с учителями начальной школы словаря-программы постепенного ознакомления детей со “взрослой” лексикой, проведение отдельных уроков в начальной школе вместе с учителем средних классов
Создание у детей учителем и родителями в конце 4 (3) класса “психологического барьера” – настороженного ожидания трудностей учения в 5 классе
Знакомство родителей и детей со своими будущими учителями уже в 4(3) классе, проведение математических праздников, олимпиад, соревнований, отдельных уроков, родительских собраний совместно с учителем 5 класса
Общеучебные умения и навыки, элементы развития
Недостаточная техника чтения (в особенности – математических текстов, условий задач), большие проблемы в понимании текста учащимися из-за обедненного лексического запаса у части детей, неумение делить текст на смысловые части и анализировать его
Постоянно предлагать учащимся задания на проверку знания и понимания смысла математических терминов, вести словарики терминов, читать вслух и анализировать условия задач, рекомендовать и родителям проводить такую работу с детьми при выполнении заданий по математике
Недостаточная скорость письма, нечеткий почерк у значительной части детей
Рекомендовать упражнения для развития мышц кисти руки, подходящую ручку, продолжать следить за правильностью написания букв и цифр, за верным положением ручки
Проблема
Тенденция
Возможности разрешения
Неустойчивость внимания, слабо развитая оперативная память у многих детей
На уроках предлагать цепочные вычисления, дома – специальные упражнения на тренировку внимания и памяти
Недостаточная тренированность долговременной механической памяти
Практиковать письменный опрос правил, предлагать для запоминания не только стихотворные, но и прозаические тексты
Элементы псевдоучебной деятельности в процессе обучения, неумение отделять существенное от несущественного
Своевременно отходить от требований, предъявлявшихся детям на ранних этапах обучения, при первом знакомстве с учебным материалом
Отсутствие у учащихся умения и привычки обращаться к энциклопедиям, справочникам, словарям, научно-популярной и дополнительной учебной литературе
Рекомендовать иметь в классе справочные издания, предлагать учащимся задания по работе со справочниками и словарями, поручать готовить сообщения, рассказы, сочинения по материалам дополнительной литературы
Специальные математические знания, умения и навыки
Недостаточные умения устных вычислений (все арифметические действия в пределах 100 учащиеся должны выполнять устно)
Постоянное подкрепление знания таблиц сложения и умножения, систематическое проведение содержательного и напряженного устного счета
Ошибки в письменном делении многозначных чисел
Регулярное повторение всех этапов алгоритма выполнения деления, систематическое включение в устную работу заданий на табличное умножение и деление, сложение и вычитание
Проблема
Тенденция
Возможности разрешения
Ошибки в письменном умножении многозначных чисел
Регулярное повторение всех этапов алгоритма выполнения умножения, систематическое включение в устную работу заданий на табличное умножение и сложение
Слабое знание правил порядка выполнения действий (в т. ч. и в выражениях со скобками)
После записи вычислительных примеров начинать с выделения отдельных “блоков”, из которых он состоит, обращать внимание на “сильные” и “слабые” знаки арифметических действий, а затем расставлять номера действий
Недостаточные умения решать текстовые задачи (даже и в одно – два действия)
Предлагать сначала представить себе ситуацию, о которой речь в задаче, изобразить ее на рисунке или схеме. При обсуждении решения – вопросы: как догадались, что первое действие – именно такое?
Недостаточное развитие графических умений
Регулярное выполнение чертежей как на бумаге в клетку (с подсчетом числа клеточек – например, начертить отрезок длиной 6 клеток, от выбранной точки отступить вниз на 4 клетки и т.п.), так и на нелинованной бумаге, построение фигур по командам
Формальные представления об уравнении, его корне, способах проверки правильности решения уравнения
Большее внимание уделять первым этапам формирования понятия переменной, верного и неверного равенства, нахождению значения выражения с переменной
Проблема
Тенденция
Возможности разрешения
Недостаточно грамотная математическая речь учащихся
Учителю чаще давать образцы чтения выражений, равенств, уравнений и неравенств, склонять числительные, тренировать школьников в верном чтении математических выражений, использовании названий натуральных чисел и дробей в косвенных падежах (см. приложение 2)
Пути решения проблем преемственности между отдельными ступенями школы, в том числе и в школьном курсе математики «двусторонние»:
С одной стороны – в совершенствовании требований к знаниям, умениям, навыкам учащихся как в начальном, так и в среднем звене.
А с другой – в сохранении организационных форм, методов, средств обучения, характерных для работы учителя начальных классов.
Учитель начальных классов и учитель математики должны соблюдать в обучении:
единообразие в трактовке понятий, в терминологии, в используемом языке;
системность в изучении понятий;
Очевидно, что подготовка к работе учителя математики должна начинаться задолго до 1 сентября.
Глава II. Методика обучения решению уравнений.
Уравнения в начальной школе.
Уравнение – это самая простая и самая распространенная форма математической задачи. Возьмем два числовых выражения и поставим между ними знак равенства. Мы получим числовое равенство. Оно будет верным или неверным в зависимости от того, равны или не равны значения взятых числовых выражений. Классическими примерами являются равенства 2 ·2 =4 и 2 ·2 =5
Решить уравнение – это значит найти все его корни или убедиться, что корней нет. Например, установим, является ли уравнением с одним неизвестным выражение m+0=m. Рассматриваемое выражение представляет собой равенство, содержащее обозначенное буквой m неизвестное число. Если требуется найти это неизвестное число, то рассматриваемое утверждение является уравнением. Если же рассматривать это выражение как запись того, что прибавление к любому числу числа 0 дает сумму, равную первоначальному числу, то утверждение не является уравнением. У уравнения m+0=m сколько угодно решений: любое число m является его решением.
У уравнения a+3=4+a нет решений.
У уравнения a+3=4 одно решение: a=1
Если требуется решить уравнение, то надо найти все его корни или доказать, что корней нет. Отметим, что когда мы говорим «равенство двух числовых выражений», мы вовсе не утверждаем, что эти два выражения действительно равны. Соединить два числовых выражения А и В знаком «=» и говорить о получившемся равенстве А=В можно независимо от того, верно или неверно сформулированное нами утверждение «А=В».
Возьмем два буквенных выражения и соединим их знаком равенства. Получим уравнение. Таким образом, уравнение в первом приближении можно понимать как равенство двух буквенных выражений.
Равенство числовых выражений иногда называют безусловным равенством, т.е. равенством безусловно верным, или безусловно неверным. Уравнение с этой точки зрения можно считать условным равенством – при одних условиях (т.е. при одних значениях букв) оно может оказаться верным, при других – неверным. Тождество – это равенство, при всех допустимых значениях букв. Его тоже можно считать частным случаем уравнения.
Уравнения – это не просто формальное равенство двух выражений. Главное в понятии уравнения – это постановка вопроса о его решении. Следовательно, уравнение – это равенство двух выражений вместе с призывом найти его решение. Что же значит решить уравнение?
Буквы, входящие в состав уравнения (т.е. в состав выражений, образующих уравнение), называются неизвестными. Если такая буква одна, то говорят, что мы имеем дело с уравнением с одним неизвестным. Значение неизвестного, при подстановке которого уравнение превращается в верное числовое равенство, называется корнем уравнения. Решить уравнение с одним неизвестным, значит найти все его корни. Полезно помнить, что подставлять в уравнение можно любое значение х. При каком-то значении х может получиться бессмысленное числовое выражение, а при х из области допустимых значений получится осмысленное числовое равенство. Если при этом оно окажется еще и верным, то взятое число х является корнем уравнения. Уравнение может иметь один корень, например, х=5. Все корни (решения) уравнения образуют множество корней. Слово “множество” не означает, что корней очень много (“великое множество”). Если множество корней обозначить одной буквой, например х, то ответ может быть записан иначе. Примеры записей ответов с употреблением теоретиком множественных обозначений: x =
Способы решения уравнений.
В курсе математики начальных классов уравнение рассматривается как истинное равенство, содержащее неизвестное число.
Термин “решение” употребляется в двух случаях: он обозначает так число (корень), при подготовке которого уравнение обращается в верное числовое равенство, так и сам процесс отыскания такого числа, т.е. способ решения уравнения . В данной работе для нас важнее второе толкование этого термина, поэтому рассмотрим некоторые способы решения уравнений более подробно.
Способы решений уравнений могут быть различными, желательно, чтобы учащиеся овладели их разнообразием. Выделяют следующие способы решения уравнений: способ, основанный на подборе значений переменной, способ, основанный на знании состава чисел, способы основанные на зависимостях между компонентами и результатами действий, графический способ, способы, основанные на разностном и кратном отношении чисел. Рассмотрим некоторые из них более подробно.
При решении уравнений в начальной школе не редко используется способ подбора. Прежде всего он формирует осознанный и материалистически верный подход к решению уравнений, т.к. ученик сразу ориентируется на то, что подобранное им число он должен проверить, т.е. подставить его и выяснить, верное или неверное числовое равенство при этом получится. Так, решая уравнение x+2=5, ученик пробует подставить вместо x число 1, 2, 3. Даже если ученик смог сразу дать правильный ответ, он должен еще “доказать” его правильность, подставив найденное число в уравнение вместо х. В этом случае для проверки осознанности, действий учащегося можно задать ему вопрос: “Почему х не может равняться 2? (Если вместо х подставить 2, то получится 4, а не 5).
Используя способ подбора, учащиеся смогут справиться и с решением уравнений на нахождение неизвестного уменьшаемого или вычитаемого. При подборе чисел в процессе решения уравнений ученик должен прежде всего, подумать, с какого числа целесообразнее его начать.
Все рассуждения, связанные с подбором решения уравнения и его проверкой, осуществляются устно . Способ подбора формирует у учащегося умение “оценить”, “проанализировать” записанное уравнение, что создает благоприятные условия для решения уравнений в дальнейшем с помощью “правил”.
Решение уравнений на основе соотношения между частью и целым.
Уравнения на сложение и вычитание с фигурами, линиями, числами рассматриваются в программе Л. Г. Петерсон.
Составляя подобные равенства, учащиеся на основе практических предметных действий выводят и усваивают правила:
целое равно сумме частей
чтобы найти часть, надо из целого вычесть другую часть
Взаимосвязь между частью и целым является затем для учащихся тем удобным и надежным инструментом, который позволяет им легко решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым.
Решение уравнений на основе зависимости между компонентами действий.
После того как учащиеся научатся решать простейшие уравнения вида: х + 10 = 30 – 7, х+ (45 –17) =40 и т.п. им предлагаются более сложные уравнения, для нахождения неизвестного компонента, в которых необходимы определенные преобразования. Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений.
Первыми рассматриваются уравнения, в которых правая часть задается не числом, а числовым выражением, например: х+25=50·14 или х+25=12 ·3. При решении подобных уравнений учащиеся вычисляют значение выражения в правой части, после чего уравнение сводится к простейшему.
На протяжении длительного периода учащиеся упражняются в чтении, записи, решении и проверке таких уравнений, причем в левую и правую части их включаются простейшие выражения всех видов в различных сочетаниях. Наиболее сложными являются уравнения, в которых один из компонентов – выражение, содержащее неизвестное число х, например: (х+8) – 13=15, 70 + (40 – х)=96 и т.п., так как при решении уравнений данной структуры приходится дважды применять правила нахождения неизвестных компонентов. Например, рассматривают на уроке уравнение (12-х)+10=18. Очень важно правильно прочитать его, выяснить последнее действие, назвать компоненты, выделить каждое слагаемое, затем дети говорят о том, что неизвестное входит в первое слагаемое. После нахождения неизвестного слагаемого, после преобразования дети получают простейшее уравнение, в котором неизвестное вычитаемое. После нахождения вычитаемого х=4 необходимо сделать проверку решения уравнения.
Обучение решению уравнений этого вида требует длительных упражнений в анализе выражений и хорошего знания правил нахождения неизвестных компонентов.
Овладение навыками решения уравнений данного вида способствует преемственному обучению.
Решение уравнений на основе знаний конкретного смысла умножения.
При решении уравнений в начальной школе используется способ решения уравнения на основе знаний конкретного смысла умножения. В ходе решения уравнения вида 17+17=17·х можно преобразовывать левую часть. Проанализировав вид уравнения, можно найти рациональный способ его решения.
Необходимо заменить сумму одинаковых слагаемых действием умножения. Затем сравнивая левую и правую часть, делается вывод, что этот вид уравнения можно решить на основе конкретного смысла умножения
Этот способ формирует у учащегося умение «оценивать», «проанализировать» записанное уравнение, что создает благоприятные условия для решения уравнений в дальнейшем.
Решение уравнений способом методического приема с весами.
Таким способом решаются сложные уравнения вида 2·х+8=20 или 2·(х+8)=20. Весы находятся в равновесии. Ставится вопрос: как «избавиться» от числа? В таком случае дети сами догадаются, что если из каждой части весов убрать по 8, то равновесие сохраняется. Если же это число убрать только с одной чаши, то весы будут не в равновесии. Значит, это число нужно убрать с обеих чаш. При решении уравнений таким способом нужно обратить особое внимание на то, что сложение и деление – это взаимообратные арифметические действия.
Ученик использует в своих суждениях план, который определяет «шаги», ведущие к достижению поставленной цели. Этот способ позволяет учащимся учится рассуждать, переносить общие суждения на частные, ускорить осознание изучаемого материала.
Учащиеся, освоившие решение уравнений в начальных классах не испытывают трудностей в обучении математике в V классе.
Обучение решению уравнений по-разному реализуются в программах по математике.
М. И. Моро, Ю. М. Колягин, М. А. Баитова.
К элементам алгебраической пропедевтики относится ознакомление детей с таким важным математическим понятием как понятие переменной. В теме «Числа от 1 до 10» после введения названий компонентов и результатов сложения и вычитания учащимся предлагаются упражнения, в которых значения слагаемых заданы в табличной форме и требуется найти суммы и заполнить соответствующие клетки таблицы. В дальнейшем вводится буквенное обозначение переменной. Дети учатся находить значения буквенных выражений при заданных числовых значениях входящих в них букв. Постепенно, начиная с решения подбором так называемых «примеров с окошком» вида o + 3 = 7,
o – 3 = 7 или 10 – o = 7, учащиеся знакомятся с простейшими уравнениями (х · 8 = 56, х + 9 = 19, х : 4 = 7 и т.п.), у них формируется понятие о том, что значит решить уравнение. В теме «Числа от 1 до 100» программой предусмотрено решение уравнений на основе знания взаимосвязей между компонентами и результатами действий. На более позднем этапе структура решаемых уравнений усложняется (х · 8 = 246 – 86 и т.п.). Это способствует формированию у детей понятий равенство, левая и правая части равенства.
I класс. Введение буквенной символики для обозначения компонентов действий сложения и вычитания.
II класс. Решение уравнений вида 58 – х = 27, х – 36 = 23, х + 38 = 70 на основе знания взаимосвязей между компонентами и результатами действий.
III класс. Решение уравнений вида х · 6 = 72, х : 8 = 12, 64 : х = 16 на основе знания взаимосвязей между результатами и компонентами действий.
IV класс. Решение уравнений вида х + 312 = 654 + 79, 360 : х = 360 : 7 на основе взаимосвязей между компонентами и результатами действий.
Обучение математике по программе автора Л. Г. Петерсон.
Развитие алгебраической линии неразрывно связано с числовой, во многом дополняя ее и обеспечивая повышение уровня обобщенности усваиваемых детьми знаний. Вместе с тем она обладает и известной самостоятельностью в качестве подготовительного этапа, необходимого для постепенного перехода к изучению программного материала. С самых первых уроков вводится буквенная символика, формируются определенные виды записи, причем эти записи аналогичны и для множеств, и для величин. Например, при решении уравнений из того, что
А + Х = С (для множеств, следует, что Х = С – А, а из того, что а + х = с для величин, следует, что х = с – а). И в том и в другом случае решение обосновывается тем, что мы ищем неизвестную часть, поэтому из целого вычитаем другую часть. Как правило, запись общих свойств операций над множествами и величинами обгоняет соответствующие навыки при выполнении аналогичных операций над числами. Это позволяет создать для каждой из таких операций общую рамку, в которую потом, по мере введения новых классов чисел, укладываются операции над этими числами и свойства этих операций. Тем самым дается теоретически обобщенный способ ориентации в учениях о конечных множествах, величинах и числах, позволяющий потом решать обширные классы конкретных задач.
I класс. Уравнения вида а + х = с, а – х = с, х – а = с, решаемые на основе соотношений между частью и целым.
II класс. Уравнения вида а ·х = с, а : х = с, х : а = с, решаемые на основе их графической интерпретации. Решение задач на нахождение сторон прямоугольника, его периметра и площади, на нахождение объема куба и на основе знания формул.
III класс. Уравнения вида а + х = с, а – х = с, х – а = с, а · х = с, а : х = с, х : а = с, с комментированием по компонентам действий. Решение задач с использованием формул пути, стоимости, площади и периметра прямоугольника, объема прямоугольного параллелепипеда, деления с остатком.
IV класс. Решение усложненных уравнений вида а + х = с, а – х = с, х – а = с, а · х = с, а : х = с, х : а = с и задач с их применением.
Анализ работы показывает, что в каждой программе имеет место работа над уравнениями. Однако сложность уравнений и возможность их применения для решения других математических задач варьируется.
Уравнения в 5–6-х классах.
Линия уравнений является стержнем алгебраического материала школьного курса математики.
В изучении уравнений выделяются три этапа.
К I этапу относится пропедевтическое изучение уравнений в начальной школе, II этап – более высокий уровень пропедевтики этих понятий в курсе 5–6 классов и III этап начинается с 7 класса.
Мы рассмотрели изучение уравнений в начальной школе. В 5 классе в идейном отношении преемственность сохраняется. Используются формулировки: «Равенство, содержащее неизвестное число, называют уравнением», «Решить уравнение – значит найти все его корни», «Найденное значение неизвестного числа называют корнем уравнения». Способы решения уравнений по-прежнему ограничиваются использованием взаимосвязи между компонентами и результатами действий. Однако здесь более ярко выделяется линия на обобщение осваиваемых способов решения и фиксирования их в буквенно-символической форме. Решается уравнение х – 47 = 25. Вместе с классом анализируется равенство и отмечается, что следует найти неизвестное уменьшаемое. По смыслу вычитания находят корень уравнения. Далее способ решения такого вида обобщается: «Вообще если х – в = с, то х = в + с«, одновременно формулируется правило; правило заучивается учащимися. В 5 классе изучаются способы нахождения неизвестного слагаемого, уменьшаемого, вычитаемого, множителя, делимого, делителя. Правила нахождения формулируются и заучиваются. Записи способов нахождения неизвестного числа в буквенно-символической форме тщательно анализируются, «Что означают в равенстве используемые буквы?», уточняется смысл и объясняется значение используемых символов, а также отмечается, что в записи конкретных уравнений неизвестное число может обозначаться любой буквой.
В 5-м классе изучаются уравнения, которые содержат буквенные выражения только в одной части уравнения. При их решении внимание учащихся сосредотачивается на выделение способа решения, осмысление понятия коря и на понимании постановки задачи о решении уравнения.
Выделение нужного способа решения обеспечивается качественным анализом выражения, стоящего в левой части уравнения: какое действие выполняется последним, как читается запись этого выражения, какому компоненту этого действия принадлежит неизвестное число и т.п. Понимание же постановки задачи о решении уравнения обеспечивается анализом произведенной записи решения и полученного результата; кроме того, учащимся предлагаются вопросы как: «Все ли корни уравнения найдены?», и другие, приучающие их к осмысливанию решения и полученного результата. Конструкция уравнений усложняется. Теперь для их решения учащиеся должны выполнить последовательно несколько преобразований, каждое из которых освоено ими раньше.
Запись решения обычно сопровождается словесным описанием выполняемых действий. Используются при решении первых уравнений для зрительного подкрепления и выработки правильной математической речи. Таблицы с образцами решения.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Методика обучения решению уравнений учащихся
методическая разработка по алгебре
Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Скачать:
Вложение | Размер |
---|---|
metodika_obucheniya_resheniyu_uravneniy.doc | 287.5 КБ |
Видео:лучший учебник по математике (начальная школа), ошибки начальной школы в математике - Л. А. ЯсюковаСкачать
Предварительный просмотр:
Методика обучения решению уравнений учащихся
Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство,промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений.
Проблема методики формирования умений решать уравнения является актуальной для учителей всех школьных предметов, в том числе и для учителей математики. Ее решение важно еще и с той точки зрения, что для успешного овладения современным содержанием школьного математического образования необходимо повысить эффективность процесса обучения в направлении активизации деятельности учащихся. Важным является раскрытие процесса формирования умений и навыков решения уравнений.
Я хочу в своей работе рассмотреть вопросы связанные с изучением уравнений в курсе математики. Поэтому я перед собой поставила следующие цели и задачи.
1. Изучить психолого — педагогическую и методическую литературу, Касающуюся изучению уравнений. Проанализировать школьные учебники и выделить в них место уравнений.
2. Составить конспекты уроков обучения решения различных видов уравнений с использованием самостоятельной работы.
3. Разработать самостоятельных работ для учащихся по различным темам
Теоретические аспекты обучению уравнений
Из истории возникновения уравнений.
Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических
действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.
Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.
Квадратные уравнения в Древнем Вавилоне
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных,полные квадратные уравнения:
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Как составлял и решал Диофант квадратные уравнения
В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.
Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е.. 10 — х. Разность между ними 2х. Отсюда уравнение
Отсюда х == 2. Одно из искомых чисел равно 12, другое 8. Решение х = — 2
для Диофанта не существует, так как греческая математика знала только положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения
Ясно, что, выбирая в качестве нtизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения
Квадратные уравнения в Индии
Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
ax2 + bх = с, а> 0. (1)
В уравнении (1) коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
|«Обезьянок резвых стая |А двенадцать по лианам |
|Всласть поевши, развлекалась |Стали прыгать, повисая |
|Их в квадрате часть восьмая |Сколько ж было обезьянок, |
|На поляне забавлялась |Ты скажи мне, в этой стае?» |
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
Соответствующее задаче 13 уравнение Бхаскара пишет под видом
и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:
x2 — б4х + 322 = -768 + 1024,
Квадратные уравнения у ал-Хорезми
В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корням», т. е. ах2 = bх.
2) «Квадраты равны числу», т. е. ах2 = с.
3) «Корни равны числу», т. е. ах = с.
4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.
5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.
6) «Корни и числа равны квадратам», т. е. bх + с == ах2.
Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не
говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.
Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень»
(подразумевается корень уравнения х2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.
Содержание и роль линии уравнений в современном школьном курсе
Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.
Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный
характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.
Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже
XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.
Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:
a) уравнение как средство решения текстовых задач;
b) уравнение как особого рода формула, служащая в алгебре объектом
c) уравнение как формула, которой косвенно определяются числа или
координаты точек плоскости (пространства), служащие его решением.
Каждое кз этих представлений оказалось в том или ином отношении полезным.
Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.
Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно
— методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой,
функциональной и другими линиями школьного курса математики.
Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.
а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.
В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.
б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование,
которые также должны быть раскрыты в линии уравнений
в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за
исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k – натуральное число, большее 1) и ax=b.
Связь линии уравнений с числовой линией двусторонняя. Приведенный пример показывает влияние уравнений на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений. Например,
введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х2 = b, где b—неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом. Линия уравнений тесно связана также и с функциональной линией. Одна изважнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем. С функциональной линией непосредственно связан также и небольшой круг вопросов школьного курса математики, относящихся к дифференциальным и функциональным уравнениям. Сама возможность возникновения дифференциального
уравнения кроется в наличии операции дифференцирования (может быть поставлен вопрос о нахождении для заданной функции ( другой функции F, такой, что F’ (x)=f (х)).
Однако сама по себе возможность выделения дифференциальных уравнений в школьном курсе математики еще не следует из того факта, что имеются формальные основания для их рассмотрения. Как известно, теория дифференциальных уравнений обладает большой сложностью. В школьном обучении эта теория представлена лишь своими начальными частями, которые не образуют связного целого, а относятся к различным конкретным, по большей части прикладным вопросам.
По-видимому, понятие дифференциального уравнения допускает более широкое представление в школьном курсе. В настоящее время этот вопрос является открытой методической проблемой.
В отличие от дифференциальных, функциональные уравнения (неизвестным в которых, так же как и в дифференциальных, является функция) почти не представлены в школьном курсе математики. Единичные задания, связанные с этим классом уравнений, могут быть использованы при рассмотрении показательной функции, в связи с понятием обратной функции и др. В качестве последнего примера отметим взаимосвязь линии уравнений с алгоритмической линией. Влияние же алгоритмической линии на линию уравнений заключается прежде всего в возможности использования ее понятий для описания алгоритмов решения уравнений и систем различных классов.
В школьной математике большую роль играет компонент, при
котором уравнение трактуется как равенство двух функций. Его роль
проявляется в изучении графического метода решения уравнений. Однако в известных нам учебниках алгебры этот компонент не кладется в основу определения уравнения.
Еще один подход к определению понятия уравнения получается при
сопоставлении области определения уравнения и множества его корней. Обычно множество корней уравнения — собственное подмножество его области определения. С другой стороны, при решении уравнений приходится
использовать преобразования, которые опираются на тождества, т. е. на равенства, истинные на всей области определения. Выделенное здесь противопоставление тождества и уравнения может быть положено в основу определения уравнения.
Формирование понятия уравнения требует использования еще одного термина: «решить уравнение». Различные варианты его определения отличаются друг от друга, по существу, только наличием или отсутствием в них термина «множество».
Таким образом, при освоении понятия уравнения необходимо использовать термины «уравнение», «корень уравнения», «что значит решить уравнение». При этом наряду с компонентами понятия уравнения, входящими в текст определения, надо включать и все другие его компоненты по мере развертывания материала данной линии.
В определении понятия уравнения используется один из двух терминов: «переменная» или «неизвестное». Различие между ними состоит в том, что переменная пробегает ряд значений, не выделяя ни одного из них специально, а неизвестное представляет собой буквенное обозначение конкретного числа (поэтому этим термином удобно пользоваться при составлении уравнений по текстовым задачам). Так,с термином «переменная» связана операция подстановки числа вместо буквы, поэтому в уравнение а(х)=b[х) можно подставлять вместо х конкретные числа и находить среди них корни. Термин же «неизвестное» обозначает фиксированное
При описании методики мы будем пользоваться термином «неизвестное», который ближе, чем «переменная», связано с алгебраическим методом решения текстовых задач и тем самым с прикладной направленностью линии уравнений и неравенств.
Равносильность и логическое следование.
Рассмотрим логические средства, используемые в процессе изучения уравнений и неравенств. Наиболее важным среди них является понятие равносильности.
Напомним, что уравнения называются равносильными, если выполнены условия: области определения уравнений одинаковы и множества их корней равны. Имеются два пути установления равносильности уравнений.
Первый: используя известные множества корней уравнений, убедиться в их совпадении; например, уравнения х + 1=х + 2 и x2 + 1=x2 + 2 равносильны, потому что не имеют корней.
Второй: используя особенности записи уравнений, осуществить
последовательный переход от одной записи к другой посредством
преобразований, не нарушающих равносильности.
Очевидно, что для большинства заданий второй путь более характерен. Это и понятно, ведь равносильность в теории уравнений как раз и используется для того, чтобы указать конкретные правила для решения уравнений. Однако в преподавании ограничиваться им нецелесообразно, поскольку он относится только к практическому применению равносильности и требует первого для своего обоснования. Вместе с тем усвоение понятия равносильности как равносильности предикатов требует значительной культуры мышления и не может быть усвоено на начальных этапах изучения школьного
курса алгебры без специальных значительных усилий.
В отношении формирования понятия равносильности и его применения к решению уравнений учебные пособия по алгебре можно разделить на две группы. К первой относятся те пособия, в которых использование равносильных преобразований основано на явном введении и изучении понятия равносильности; ко второй — те, в которых применение равносильных преобразований предшествует выделению самого понятия. Методика работы над понятием равносильности имеет при указанных подходах значительные отличия.
В связи с рассматриваемым вопросом в изучении материала линии уравнений и неравенств можно выделить три основных этапа. Первый этап охватывает начальный курс школьной математики и начало курса алгебры. Здесь происходит ознакомление с различными способами решения отдельных, наиболее простых классов уравнений. Используемые при этом преобразования получают индуктивное обоснование при рассмотрении конкретных примеров. По мере
накопления опыта индуктивные рассуждения все чаще заменяются такими, где равносильность фактически используется, но сам термин не употребляется. Длительность этого этапа может быть различной; она зависит от методических установок, принятых в данном учебном пособии.
На втором этапе происходит выделение понятия равносильности и
сопоставление его теоретического содержания с правилами преобразований, которые выводятся на его основе. Длительность этого этапа незначительна, поскольку на нем происходит только выделение этого понятия и его использование на нескольких теоретических примерах.
На третьем этапе на основе общего понятия равносильности происходит развертывание и общей теории, и теории отдельных классов уравнений. Такой стиль характерен для курса алгебры и начал анализа, изучаемого в старших классах средней школы. Он применяется и в некоторых пособиях по алгебре для неполной средней школы.
Логическое следование начинает применяться значительно позже
равносильности и осваивается в качестве некоторого дополнения к нему. При решении уравнений при прочих равных условиях предпочтение отдается равносильному преобразованию; логическое следование применяется лишь тогда, когда соответствующего равносильного преобразования найти не удается. Это, однако, не означает, что использование логического следования — вынужденная
мера. Нередко в практике работы учителей логическое следование применяется как прием, упрощающий процесс решения, если сохранение равносильности может быть достигнуто сравнительно дорогой ценой.
Среди неравносильных преобразований есть преобразования, не являющиеся логическим следованием. Например, переход к рассмотрению частного случая (пример: переход от уравнения а -b= 0 к рассмотрению уравнения а=0). Такие переходы можно рассматривать как практические приемы, позволяющие сосредоточить внимание на отдельных шагах процесса решения уравнения.
О классификации преобразований уравнений и их систем.
Можно выделить три основных типа таких преобразований:
1) Преобразование одной из частей уравнения.
2) Согласованное преобразование обеих частей уравнения.
3) Преобразование логической структуры.
Поясним эту классификацию.
Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого уравнения. Например, решая уравнение cosx-tgx=l, можно пытаться заменить выражение в левой частиболее простым. В данном случае соответствующее преобразование приводит к
уравнению sin x= 1, неравносильному исходному за счет изменения области определения. Возможность получения при такой замене уравнения, неравносильного данному, приходится учитывать при изучении некоторых типов уравнений, например тригонометрических или логарифмических. В классе дробно- рациональных уравнений с этим явлением приходится сталкиваться гораздо реже. (Здесь это связано с возможностью потери корней при сокращении
дроби.) Наконец, в классе целых алгебраических уравнений рассматриваемый тип преобразований всегда приводит к уравнениям, равносильным данным.
Преобразование одной из частей уравнения используют раньше всех других преобразований уравнений, это происходит еще в начальном курсе математики. Прочность владения навыком преобразований этого типа. имеет большое значение для успешности изучения других видов преобразований, поскольку они применяются очень часто.
Основой преобразований данного типа являются тождественные
преобразования. Поэтому классифицировать их можно в соответствии с классификацией тождественных преобразований, например раскрытие скобок, приведение подобных членов и т. д.
Преобразования второго типа состоят в согласованном изменении обеих частей уравнения в результате применения к ним арифметических действий или элементарных функций. Общей основой всех преобразований этого типа является логический принцип, выражающий характеристическое свойство равенства выражений: если выражения а и b равны и в выражении F (х) выделена переменная х, которая может принимать значение а, то выражения F(а) и FF <a)=F (b).
Преобразования второго типа сравнительно многочисленны. Они составляютядро материала, изучаемого в линии уравнений.
Приведем примеры преобразований этого типа.
1)-Прибавление к обеим частям уравнения одного и того же выражения.
2) Умножение (деление) обеих частей уравнения на одно и то же выражение.
3) Переход от уравнения a=b к уравнению (f (a)=( f(b), где (f(x) -некоторая функция, или обратный переход.
К третьему типу преобразований относятся преобразования уравнений, и их систем, изменяющие логическую структуру заданий. Поясним использованный термин «логическая структура». В каждом задании можно выделить элементарные предикаты — отдельные уравнения. Под логической структурой задания мы понимаем способ связи этих элементарных предикатов посредством логических связок конъюнкции или дизъюнкции.
В зависимости от средств, которые используются при преобразованиях, в этом типе можно выделить два подтипа: преобразования, осуществляемые при помощи арифметических операций и при помощи логических операций. Первые можно назвать арифметическими преобразованиями логической структуры, вторые
— логическими преобразованиями логической структуры.
Наиболее важными для школьного курса математики арифметическими преобразованиями логической структуры являются:
а) Переход от уравнения a * b=0 к совокупности уравнений а=0, b=0.
Сюда же относятся сходные преобразования для уравнений вида ,
б) Переход от системы уравнений к одному уравнению посредством
почленного сложения, вычитания, умножения или деления уравнений, входящих в систему.
Приведем примеры логических преобразований логической структуры:
а) Выделение из системы уравнений одного из компонентов. Например,при решении системы уравнений способом подстановки можно
в качестве первого шага рассмотреть первое из уравнений (это и будет преобразование данного типа, условно его, можно изобразить так: А(В——>А).Смысл такого преобразования в том, что выделенное уравнение можно подвергать дальнейшим преобразованиям независимо от той системы, в которую оно входит.
б) Замена переменных. В простейшем случае замена переменных состоит в переходе от уравнения F (f (x))=0 к системе Связь этой системы и данного уравнения такова: число Х0 — решение уравнения F (f (х))=0 тогда и только тогда, когда пара (х0, f (х0)) — решение системы. Это преобразование позволяет одно «сложное» уравнение заменить системой более простых уравнений. Так решаются биквадратные уравнения, многие типы иррациональных и трансцендентных уравнений (например, при их сведении к
в) Преобразование, противоположное замене переменных, т. е. переход от системы вида к уравнению F (х, f (х))=0.
Корни этого уравнения и решения данной системы связаны так же, как при замене переменной. Это преобразование назовем подстановкой.
На основе подстановки в процессе обучения алгебре вводится стандартный метод решения системы уравнений с двумя неизвестными: в одном из уравнений одно из неизвестных выражается через другое, полученную при этом систему решают методом подстановки. Этот метод превращается в дальнейшем в курсе школьной алгебры в универсальный метод уменьшения количества неизвестных в системе.
Изучение и использование преобразований уравнений и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое
значение имеет выяснение вопросов, относящихся к характеризации
производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.
В итоге изучения материала линии уравнений учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.
4. Логические обоснования при изучении уравнений.
При изучении материала линии уравнений значительное внимание уделяется вопросам обоснования процесса решения конкретных заданий. На начальных этапах изучения курса алгебры и в курсе математики предшествующих классов эти обоснования имеют эмпирический, индуктивный характер. По мере накопления опыта решения уравнений, систем различных классов все большую
роль приобретают общие свойства преобразований. Наконец, достигнутый уровень владения различными способами решения позволяет выделить наиболее часто используемые преобразования (равносильность и логическое следование).
Учебные пособия по алгебре имеют существенные различия в отношении описанных способов обоснования. Тем не менее выделяются все указанные направления, причем в общей для них последовательности. Кратко рассмотрим каждое из этих направлений.
Эмпирическое обоснование процесса решения. Таким способом описываются приемы решения первых изучаемых классов уравнений. В частности, это характерно для уравнений 1-й степени с одним неизвестным. Методика изучения этих уравнений состоит в предъявлении алгоритма решения таких уравнений и разборе нескольких типичных примеров.
Указанный алгоритм формируется, естественно, далеко не сразу. Перед этим разбирается несколько примеров, причем цель рассмотрения состоит в выделении в последовательности действий нужных для описания алгоритма операций. Объяснения учителя могут быть такими: «Нужно решить уравнение 5x+4=3x+10. Постараемся все члены, содержащие неизвестное, собрать в одной части, а все члены, не содержащие неизвестное,— в другой части уравнения.
Прибавим к обеим частям уравнения число (—4), данное уравнение примет вид 5х=3x+10—4. Теперь прибавим к обеим частям уравнения (—3х), получимуравнение 5х—3x=10—4. Приведем подобные члены в левой части уравнения, а в правой вычислим значение выражения; уравнение примет вид 2х=6. Разделим обечасти уравнения на 2, получим х=3». Этот рассказ сопровождается последовательно возникающей на доске записью преобразований:
Анализируя решение, учитель может прийти к правилам решения уравнений 1-й степени с одним неизвестным. Обратим внимание на некоторые формальные пробелы этого изложения. Прежде всего, в таком рассказе не акцентируется внимание на том, что под действием преобразований уравнение преобразуется в некоторое новое уравнение. Ученики как бы имеют дело все время с тем же
уравнением. Если бы упор делался непосредственно на переход от одного уравнения к другому, то это потребовало бы более внимательного анализа представлений, связанных с равносильностью, что как раз не характерно для первых этапов обучения алгебре.
Далее, вопрос о том, все ли корни уравнения найдены, здесь не ставится. Если даже он и возникает по ходу обсуждения процесса решения, то ответ на него, как правило, не дается. Основную роль играют действия по переносу членов из одной части уравнения в другую, группировка подобных членов.
Таким образом, вопросы обоснования решения уравнения стоят на втором плане, а на первом — формирование прочных навыков преобразований. Отсюда можно сделать вывод: на этом этапе проверка найденного корня служит необходимой частью обоснования правильности решения.
Дедуктивное обоснование процесса решения уравнений без явного использования понятия равносильности. Разобранное обоснование процесса решения не всегда может быть эффективно использовано при изучении других классов уравнений. Тем или иным способом к изучению материала линии уравнений нужно привлекать различные приемы дедуктивного обоснования. Это связано с возрастанием сложности предлагаемых заданий по сравнению с
исходным классом (уравнения 1-й степени с одним неизвестным). При этом постоянно приходится опираться на свойства числовой системы и основные понятия теории уравнений (корень уравнения, множество корней уравнения, что значит «решить уравнение»).
Обратимся к разобранному уравнению 5х+4=3x+10. С использованием равносильности его решение проводится так: «Поскольку перенос членов уравнения из одной части в другую с изменением знака — равносильное преобразование, то, осуществив его, приходим к уравнению, равносильному данному: 5х—3х=10—4. Упрощая выражения в левой и правой частях уравнения, получим 2х=6, откуда х=3».
Отметим особенности приведенного решения по сравнению с изложенным ранее. Прежде всего, оно более свернуто, предполагает намного более высокий уровень владения материалом курса алгебры. Поэтому применению такого способа решения уравнений и их систем должна предшествовать большая подготовительная работа. Объем предварительного материала зависит от общих методических установок, используемых в учебных пособиях. Например, в
учебниках алгебры для VI—VIII классов под редакцией А. И. Маркушевича понятие о равносильности вводится спустя полтора года после начала изучения систематического курса алгебры. В других курсах оно вводится гораздо позже, в старших классах.
В случае отсутствия понятий равносильности и логического следования описание процесса решения также становится постепенно все более сжатым. Отсутствие указанных терминов проявляется в том, что само описание решения не содержит элементов обоснования, которое в этих условиях произвести достаточно сложно. По этой причине в пособиях, где равносильность и логическое следование появляются поздно, сравнительно большое внимание уделяется формированию не общих приемов решения уравнений, а навыков решения уравнений тех или иных классов.
Использование логической терминологии при описании решений позволяет параллельно с нахождением корней получать также и логическое обоснование.» Особенно велика роль логических понятий при итоговом обобщающем повторении курса алгебры и всего курса математики средней школы. Поскольку при этом необходимо выявить структуру крупных частей изученного материала, отсутствует возможность вновь пройти весь путь нахождения приемов решений
различных классов уравнений. Логические понятия позволяют не только быстро восстановить путь нахождения таких приемов, но и одновременно обосновать их корректность. Тем самым происходит развитие средств логического мышления учащихся. Учитывая это, на этапах обобщающего повторения целесообразно формулировать свойства равносильности и логического следования в общем виде и иллюстрировать их заданиями, относящимися к различным классам уравнений и их систем.
Обобщенные приемы решения уравнении с одной переменной в школьном
Выделение приемов решения уравнений
Рассмотрим закономерность формирования обобщенного приема решения уравнений с одним неизвестным алгебраическим способом. Она вытекает из следующего. Для того чтобы решить любое уравнение с одной переменной, учащийся должен знать: во-первых, правило, формулы или алгоритмы решения простейших уравнений данного вида и, во-вторых, правила выполнения тождественных и равносильных преобразований, с помощью которых данное уравнение можно привести к простейшим.
Таким образом, решение каждого уравнения складывается из двух основных частей: 1) преобразования данного уравнения к простейшим; 2) решения простейших уравнений по известным правилам, формулам или алгоритмам. При этом если вторая часть решения является алгоритмической, то первая — в
значительной степени (и тем большей, чем сложнее уравнение) —
эвристической. Именно правильный выбор необходимых тождественных и равносильных преобразований, как и всякий поиск решения задачи,
представляет наибольшую трудность для учащихся.
Обучение решению уравнений начинается с простейших их видов, и программа обусловливает постепенное накопление как их видов, так и «фонда» тождественных и равносильных преобразований, с помощью которых можно привести произвольное уравнение к простейшим. В этом направлении следует строить и процесс формирования обобщенных приемов решения уравнений в школьном курсе алгебры.
Обобщение приемов решения уравнений
Обобщение способов деятельности учащихся при решении уравнений происходит постепенно. Выделим следующие этапы, процесса обобщения приемов решения уравнений:
решение простейших уравнений данного вида;
анализ действий, необходимых для их решения;
вывод алгоритма (формулы, правила) решения и запоминание его;
решение несложных уравнений данного вида, не являющихся простейшими;
анализ действий, необходимых для их решения;
формулировка частного приема решения;
применение полученного частного приема по образцу, в сходных ситуациях, в легко осознаваемых вариациях образца;
работа по описанным этапам для следующих видов уравнений согласно программе;
сравнение получаемых частных приемов, выделение общих действий в их составе и формулировка обобщенного приема решений.
применение обобщенного приема в различных ситуациях, перенос и создание на его основе новых частных приемов для других видов уравнений.
Учитель руководит всем процессом обобщения, его деятельность направлена на создание ситуаций (условий) для реализации этой схемы в процессе поэтапного формирования приемов: подбор упражнений и вопросов для диагностики контроля, помощь учащимся в осознании состава приема решения, его формулировки, отработки.
В V—VI классах при изучении числовых множеств в учебниках формулируется довольно много алгоритмов действий над числами и правил простейших тождественных преобразований выражений. Формулировка частных приемов решения различных простейших уравнений первой степени может естественно вписаться в этот процесс, не ограничиваясь, как это делают школьные учебники алгебры, объяснениями на примерах.
Проводя работу по этапам процесса обобщения, к концу изучения курса математики V—VI классов можно сформировать у учащихся, во-первых, обобщенный прием решения уравнения первой степени с одной переменной в следующем виде:
1) рассмотреть данное уравнение, отметить его особенности;
2) установить, какие из следующих упрощений уравнения можно сделать:
перенос слагаемых из одной части уравнения в другую, приведение подобных
слагаемых в левой и правой частях уравнения, раскрытие скобок, деление
обеих частей на коэффициент при неизвестном;
3) упростить уравнение;
4) найти значение неизвестного;
5) записать ответ.
Во-вторых, можно сформулировать и обобщенный прием решения задач с помощью уравнений, например, так, как это сделано в учебнике «Алгебра-7» под редакцией С. А. Теляковского (М., 1989): «. поступают следующим образом: обозначают некоторое неизвестное число буквой и, используя условие задачи, составляют уравнение; решают это уравнение; истолковывают полученный результат в соответствии с условием задачи».
В таком виде оба приема следует повторить в начале систематического изучения курса алгебры в VII классе, затем уточнить их с учетом того, что здесь дают определения основным понятиям (уравнения, корня, равносильности, линейного уравнения).
Способы решения квадратных уравнений различных видов школьные учебники по алгебре объясняют также на примерах. Отработав частные приемы решения неполных квадратных уравнений и по дискриминанту, уместно сформулировать обобщенный прием решения квадратного уравнения (по аналогии с приемом решения уравнения первой степени):
1) определить, является ли уравнение простейшим (неполным или полным) квадратным уравнением; если «да», то п. 4, если «нет» — п. 2;
2) установить, какие из следующих тождественных и равносильных
преобразований нужно выполнить, чтобы привести уравнение к простейшему: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных;
3) привести с помощью выбранных преобразований уравнение к квадратномууравнению ах2 +bх+с=0, где а>0;
4) проверить равенство коэффициентов b и c нулю; если b=0 или c=0, то п. 5, если b=с=0, то п. 6;
5) найти х по правилам: при b=c=0 х1,2=0; при с=0 и b(0
при b=0 и c 0 решений нет;
6) найти дискриминант уравнения D=b2—4ac;
7) найти х по формуле: при D>0 при D=0
8) если нужно, сделать проверку;
9) записать ответ.
Формирование этого приема не только помогает учащимся овладеть способом решения квадратных уравнений, но и подсказывает им общие компоненты деятельности при алгебраическом решении уравнений. Та же идея подкрепляется решением задач с помощью квадратных уравнений, где уместно использовать перенос уже известного приема решения задач с помощью уравнений первой степени.
Сформулируем обобщенный прием решения уравнений первой степени с одной переменной.
1) определить, является ли уравнение (неравенство) линейным; если «да», то п. 4, если «нет» — п. 2;
2) установить, какие из следующих тождественных и равносильных
преобразований нужно выполнить, чтобы привести уравнение к линейному: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных;
3) привести с помощью выбранных преобразований уравнение к линейному ах=b;
4) найти х при а=0 при а>
5) если нужно, сделать проверку, исследование;
6) записать ответ (если нужно, изобразив его на числовой оси).
Сформулировать аналогично обобщенный прием решения уравнений второй степени с одной переменной.
Изучение рациональных уравнений вносит в процесс решения уравнений существенно новый компонент, связанный с рассмотрением области определения выражения, входящего в уравнение, и возможных посторонних корней.
Программа по математике IX класса предусматривает знакомство и с
некоторыми общими для всех видов уравнений приемами преобразования уравнений к простейшим (разложение левой части на множители и введение вспомогательной переменной), графическим способом решения уравнений, решения систем уравнений второй степени, решения задач с помощью систем уравнений на примерах.
Нетрудно заметить, что разложение левой части на множители и введение вспомогательной переменной служит очередным расширением «фонда» преобразований уравнений к простейшим. Тогда к концу изучения курса алгебры неполной средней школы обобщенный прием алгебраического решения уравнений может иметь следующий вид:
1) определить, является ли данное уравнение простейшим уравнением какого-нибудь вида; если «да», выполнять п. 4, если «нет» — п. 2 ;
2) установить, какие и в каком порядке нужно выполнить тождественные и
равносильные преобразования, чтобы привести уравнение к простейшим данного вида: раскрытие скобок, приведение к общему знаменателю, перенесение членов из одной части в другую, приведение подобных, разложение левой части на множители, введение вспомогательной переменной, возведение обеих частей в
степень, замена уравнения равносильной ему системой уравнений;
3) с помощью выбранных преобразований привести уравнение к простейшим;
4) решить известным способом простейшее уравнение;
5) если нужно, сделать проверку, исследование;
6) записать ответ.
Последняя ступень в освоении школьной теории уравнений относится к организации имеющихся у учащихся знаний и опыта решения уравнений в единую, целостную систему. Для этой ступени характерны более сложные задания, в которых возрастает роль таких компонентов, как распознавание возможности сведения задания к одному из типовых классов, организация процесса решения.
Здесь существенно производить разбор решаемых заданий, выделять особенности различных классов заданий и их общие черты, отмечать ценность тех или иных применяемых средств.
По своему положению в курсе алгебры эта ступень может быть отнесена к прохождению последних тем курса и к итоговому повторению; в результате формируется общая картина связей изученных классов уравнений, неравенств и их систем. Для уравнений и систем уравнений ее можно изобразить в виде
В курсе математики старших классов учащиеся сталкиваются с новыми
классами уравнений, систем или с углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную систему; они дополняют ее новым фактическим содержанием, не меняя сложившиеся связи, соединяющие различные классы. На этом, более высоком уровне владения материалом связи становятся намного более освоенными, так что учащиеся в процессе выполнения заданий могут самостоятельно их восстанавливать.
Методика изучения основных классов уравнений и их систем.
1. Линейные уравнения с одним неизвестным.
Этот класс уравнений — первый в курсе алгебры, поэтому от характера его изучения в значительной мере зависят особенности организации всего последующего изучения линии уравнений. При изучении этого класса уравнений, помимо его непосредственного выделения и описания, приходится останавливаться на вопросах, относящихся к формированию общего понятия об уравнении, вводить терминологию.
Раннее были приведены различные взгляды на содержание понятия уравнения. Было отмечено, что каждый из них имеет определенную ценность в развертывании содержания курса алгебры. Поскольку рассматриваемый класс является первым в курсе, указанные взгляды тем или иным способом должны найти место на этом этапе изучения материала линии уравнений и неравенств.
Первая методическая задача, с которой учитель сталкивается, приступая кизложению этой темы, состоит в выделении формальной части понятия уравнений из той содержательной ситуации, в которой оно возникает. В качестве такой ситуации обычно выступает несложная текстовая задача, решение которой алгебраическим методом приводит к уравнению первой степени с одним неизвестным. Учителю следует обратить внимание учащихся на основной метод,
В различных учебниках применяется разная терминология, относящаяся, по существу, к одному и тому же классу уравнений. В этом отношении необходимо быть чрезвычайно внимательным и употреблять только те термины, которые введены в учебнике, причем именно в том смысле, который им придается.
Это объясняется прежде всего тем, что основной целью изучения в данном случае всегда является освоение правил решения уравнений данного класса, образующих сравнительно компактную систему и относящихся исключительно к преобразованиям буквенно-числовых выражений. В последнем отношении рассматриваемый класс сильно отличается от большинства других классов, в изучении которых определенную, а иногда значительную роль играют
логические, графические, вычислительные компоненты.
При изучении этого класса уравнений учащиеся подходят к осознанию того, что уравнения, с первого взгляда мало отличные друг от друга, могут резко различаться по количеству корней. Это ответственный момент, один из самых существенных в изучении всего курса алгебры, поскольку при этом учащиеся впервые сталкиваются с необходимостью теоретического осмысления именно класса уравнений, а не каждого уравнения в отдельности. Конкретные способы изложения материала, относящегося к исследованию, могут быть различными. Зависят они в первую очередь от стиля выделения
этого класса. Если он выделяется явным определением, то и результаты исследования формулируются в виде четкой системы условий, при выполнении которых имеет место один из трех возможных случаев. Если же этот класс уравнений выделяется посредством описания, то реализация каждого из этих случаев показывается на примерах, но общего обоснования не дается.
В итоге тематического изучения первого класса уравнений учащиеся должны овладеть: алгоритмом решения уравнений данного класса; умением применять результаты исследования уравнений данного класса; основными понятиями общей теории уравнении;
применением уравнений данного класса к решению текстовых задач.
2. Системы двух линейных уравнений с двумя неизвестными.
С помощью линейных уравнений с одним неизвестным можно решать
многочисленные .задачи, в которых либо имеется только одно неизвестное, либо среди неизвестных можно указать одно «ведущее», через которое выражаются остальные. Но многие ситуации описываются несколькими параметрами, вообще говоря, равноправными друг другу; эти ситуации требуют разработки новых алгебраических средств их изучения. В качестве одного из таких средств в курсе алгебры выступает класс систем двух линейных уравнений, с двумя неизвестными. Приведенное рассуждение может быть положено в основу методики изучения указанного класса. Такой способ введения подчеркивает прикладную значимость уравнений с двумя неизвестными, однако изучение этого класса требует введения обширной совокупности формальных понятий и методов, поэтому
отмеченная схема изложения, в которой проводится содержательная мотивировка данного класса, не единственный способ изложения этого материала. Изложение темы можно начать с рассмотрения понятий, входящих в качестве компонентов в понятие системы линейных уравнений с двумя неизвестными; их соединение формирует представление о данном классе. Эти компоненты таковы: представление о конъюнкции логических условий, которое формализуется в понятии системы уравнений; представление о наличии в составе логического условия двух переменных, представление о линейном уравнении с двумя неизвестными, непосредственно связанное с данным классом систем.
Рассмотрим эти компоненты подробнее. Полезность изучения понятия уравнения с двумя неизвестными перед введением понятия о системе уравнений заключается в том, что при этом могут быть рассмотрены два важных в дальнейшем вопроса: выражение одного из неизвестных через другое (это преобразование используется при изучении метода подстановки) и введение понятия графика уравнения с двумя неизвестными.
Существенно новым представлением, которое получают учащиеся при изучении этой темы, является представление о том, что решением уравнения с двумя неизвестными служит не число, а упорядоченная пара чисел. Вторым представлением, резко расширяющим кругозор учащихся, служит то, что множество решений уравнения с двумя неизвестными, как правило, бесконечно и
его изображение на координатной плоскости — некоторая линия.
Изучение этой темы может рассматриваться как определенный мостик, связывающий понятие функции и понятие уравнения с двумя неизвестными: с одной стороны, уравнение с двумя неизвестными, в котором одно из них выражено через другое, по виду формулы совпадает с функцией; с другой — оказывается, что один и тот же геометрический образ является и графиком уравнения, и графиком функции. Эти первые представления в дальнейшем подвергаются неоднократному уточнению и переосмысливанию, но уже и в таком
несовершенном виде они с успехом используются при изучении систем
Тема «Уравнение с двумя неизвестными» в случае наличия ее в курсе изучается недолго. Цель ее изучения состоит скорее во введении новых представлений, чем в развитии навыков.
Непосредственно за ней или на ее месте рассматривается тема «Линейные уравнения с двумя неизвестными». Этот класс изучается детальнее. Здесь необходимо приобрести навыки перехода от линейного уравнения ах+bу=с к уравнению y=kx+b или x=k1y+b1. Кроме того, требуется усвоить факт: график линейного уравнения ах + bу= с, где а(0 или b(0, есть прямая линия, а также научиться строить график конкретных линейных уравнений с двумя
Непосредственно перед изучением систем линейных уравнений может быть введено понятие о системе уравнений с двумя неизвестными. Но здесь необходимы некоторые уточнения. Понятие системы уравнений в курсе школьной математики строго определено быть не может из-за отсутствия в нем понятия конъюнкции. Однако для развития теории уравнений достаточно оказывается формировать представление о системе уравнений косвенным образом, посредством указания на цель — нахождение общих решений, двух данных уравнений. Заметим, что общее понятие о системе уравнений в этот момент и необязательно вводить. Общее понятие формируется постепенно на основе своего ведущего частного случая — системы линейных уравнений,— который и
составляет непосредственный предмет изучения. Фактически получается так, что понятие о системе уравнений формируется у учащихся на основе осмысления понятия «решение уравнения» и представления о том, что значит решить уравнение. |
Переход к изучению системы двух линейных уравнений с двумя неизвестными целесообразно осуществить при помощи того же процесса выделения математических понятий из текстовой задачи, который был использован в изучении первого класса уравнений. Если реализуемая в учебнике методическая система не содержит пропедевтики этого понятия, такой подход является единственно возможным. Однако даже и при наличии подготовки он позволяет
уточнить формальные характеристики вводимого класса систем уравнений и подчеркнуть некоторые существенные моменты: например, что решением системы является не одно число, а пара чисел
Основное содержание рассматриваемой темы состоит в изучении двух алгебраических способов решения таких систем, графического способа решения и исследования систем этого класса.
Отметим наиболее важные отличия в изучении этого материала от изучения класса линейных уравнений с одним неизвестным.
Алгоритмы решения систем линейных уравнений намного сложнее алгоритма решения линейного уравнения с одним неизвестным. Поэтому при их изучении учитель должен четко указывать последовательность операций, используемых в этих алгоритмах, а также провести изучение каждого действия. Эти алгоритмы,
по существу, являются первым нетривиальным примером алгоритма в линии уравнений и неравенств.
В развертывании содержания данной темы используются геометрические представления, которые не только в ряде мест могут пояснить изложение, но имеют важное самостоятельное значение. Наиболее принципиальным является их применение для проведения исследования данного класса систем. Возможны различные уровни развертывания этого материала — от иллюстраций, поясняющих
смысл различных типов множеств решений, и до использования геометрических представлений для выведения аналитических условий, определяющих каждый случай.
Второй, более высокий уровень в современном школьном курсе алгебры обычно не достигается.
3. Квадратные уравнения.
Для этой темы характерна большая глубина изложения и богатство
устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений и неравенств. К изучению этой темы учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере
именно на материале этой темы осуществляется синтез материала, относящегося к уравнениям.
Во всех современных школьных учебниках алгебры и термин, и объем понятия квадратного уравнения одинаковы. Понятие вводится посредством явного определения, что обязывает организовать работу по усвоению его формальных признаков. Это тем более необходимо, что соответствующие признаки существенно используются при построении теории квадратных уравнений, в
частности при выводе формулы корней и в теореме Виета.
Вывод формулы корней квадратного уравнения может быть осуществлен несколькими различными способами: сразу для общего или сначала для приведенного квадратного уравнения, сведением к уравнению х2—а=0 или к уравнению х2=а. Но в любом случае приходится использовать выделение полного квадрата в трехчлене ах2+bх+с, сводящее уравнение к двучленному. Выделение
последовательности шагов, приводящих к решению квадратных уравнений, проводится сначала на конкретных примерах.
Необходимым этапом при выводе формулы корней квадратного уравнения служит исследование, выявляющее три возможных случая: отсутствие корней, наличие одного или двух корней. При этом вводится дискриминант уравнения. В результате исследования формулируется вывод: «Если дискриминант квадратного уравнения ах2+bх+с = 0 отрицателен, то оно не имеет действительных корней; если дискриминант равен нулю, то имеется один корень, равный — b/2a; если
дискриминант положителен, то уравнение имеет два корня».
Учитывая этот вывод, решение конкретных квадратных уравнений проводится следующим образом: сначала вычисляется дискриминант, сравнивается с нулем, и если он неотрицателен, то применяются формулы для нахождения корней.
В ряде учебников, кроме основной формулы для корней квадратного уравнения ах2 + bх + с = 0, приводятся еще формулы корней уравнения x2+px+q=0 или x2+2px+q=0. Иногда использование этих формул упрощает вычисления, при
наличии времени полезно их рассмотреть.
При изучении темы «Квадратные уравнения» рассматриваются и неполные квадратные уравнения. Обычно они изучаются перед выводом корней общего квадратного уравнения. Хотя различные виды неполных квадратных уравнении имеют разные алгоритмы решения, при изучении данной темы необходимо показать, что общая формула корней применима и для этих случаев.
Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами квадратного уравнения. Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное
уравнение и его корни; в обратной — только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета. Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на
случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители.
Владение теорией квадратных уравнений существенно расширяет возможности решения уравнений методами, изучаемыми в курсе алгебры. Так, прямо сводятся к квадратным дробно-рациональные уравнения и биквадратные уравнения.
Еще один класс составляют алгебраические уравнения, которые разложением на множители могут быть сведены к линейному и квадратному уравнениям. Богатство и разнообразие приемов, имеющихся у учащихся, овладевших сведением различных уравнений к квадратным, служат необходимой предпосылкой перехода к завершающему этапу освоения методов решения уравнений. Особенно
это сказывается на приложении к алгебраическому методу решения текстовых задач. Сюжеты их становятся более разнообразными, возрастает также сложность перевода на язык математики. В целом можно сказать, что освоение темы «Квадратные уравнения» поднимает учащихся на качественно новую ступень овладения содержанием школьной математики. При традиционном способе преподавания учитель часто ставит ученика в положение объекта передаваемой ему извне информации. Такой постановкой образовательного процесса учитель искусственно задерживает развитие познавательной активности ученика, наносит ему большой вред в интеллектуальном и нравственном отношении.
«Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью», — эти слова Л. Н. Толстого должны стать смыслом работы учителя.
Деятельность учащихся можно и нужно организовывать на
различных уровнях: от воспроизведения действий по образцу и узнавания объектов путем их сравнения с известным образцом до составления модели и алгоритма действий в нестандартных ситуациях.
Учителю Необходимо учитывать, что при составлении заданий для
самостоятельной работы степень сложности должна отвечать учебным
Переход с одного уровня на другой должен осуществляться постепенно, только когда учитель будет убежден, что учащийся справится со следующим уровнем самостоятельности. Иначе в атмосфере спешки и нервозности у ученика возникают пробелы в знаниях.
Очень важно, чтобы содержание самостоятельной работы, форма и время ее выполнения отвечали основным целям обучения данной теме на данном этапе.
В то же время учителю нужно знать, что злоупотребление самостоятельной работой в учебном процессе также вредно, как и ее недооценка. Бывает так, что учитель включает в урок самостоятельную работу без особой необходимости, просто ради разнообразия, не продумав ее содержание и форму организации. Результаты бывают плачевны: или дети не готовы выполнить
задание, или не хватило времени и т. п. А в результате — зря потрачено драгоценное время урока. Но если, составляя план урока, учитель тщательно продумал место и время самостоятельной работы; четко определил ее общее содержание, разбил задания по разным уровням сложности, то она сыграет свою положительную роль.
Поэтому учителю очень важно знать формы и виды самостоятельных работ, их место в процессе обучения.
Но нельзя забывать, что на успехи ученика огромное влияние оказывает настрой самого учителя. Здесь очень важен известный психологам эффект Резенталя — Якобсона. Эти исследователи провели следующий эксперимент: они давали учителям заведомо неправильную информацию о показателях умственного развития детей. Как выяснилось, последующие достижения учеников зависели от этой информации, т. е. от мнения учителя о возможностях ученика. Те дети, которые воспринимались учителем как более одаренные (хотя таковыми не являлись), показали большие сдвиги в учебе по сравнению с детьми, которых
учитель считал менее одаренными.
Вот почему так важно умение учителя создать в классе доброжелательную атмосферу, особенно во время выполнения самостоятельных работ.
В зависимости от целей, которые ставятся перед самостоятельными работами,
Смысл обучающих самостоятельных работ заключается в самостоятельном выполнении школьниками данных учителем заданий в ходе объяснения нового материала. Цель таких работ — развитие интереса к изучаемому материалу, привлечение внимания каждого ученика к тому, что объясняет учитель. Здесь сразу выясняется непонятное, выявляются сложные моменты, дают себя знать пробелы в знаниях, которые мешают прочно усвоить изучаемый материал.
Самостоятельные работы по формированию знаний проводятся на этапе подготовки к введению нового содержания, а также при непосредственном введении нового содержания, при первичном закреплении знаний, т. е. сразу после объяснения нового, когда знания учащихся еще непрочны. Учителю необходимо знать следующие особенности обучающих самостоятельных работ: их надо составлять в основном из заданий репродуктивного характера, проверять немедленно и не ставить за них плохих оценок.
Так как самостоятельные обучающие работы проводятся во время объяснения нового материала или сразу после объяснения, то их немедленная проверка дает учителю четкую картину того, что происходит на уроке, какова степень понимания учащимися нового материала на самом раннем этапе его изучения.
Цель этих работ — не контроль, а обучение, поэтому им следует отводить много времени на уроке.
Тема: «Линейное уравнение с двумя переменными».
Цель: 1. Дать понятие линейного уравнения с двумя переменными,
решения уравнения с двумя переменными; познакомить со свойствами уравнений с двумя переменными; закрепить понятие линейного уравнения с одной переменной.
2. Развивать вычислительные навыки, речь, мышление, память.
3. Воспитывать самостоятельность активность, трудолюбие, любовь к математике.
Оборудование: карточки ax+by>c.
I. Организационное начало урока.
II. Сообщение темы и цели.
-Сегодня, на уроке мы познакомимся с уравнениями нового вида — «Линейными уравнениями с двумя переменными».
III. Актуализация знаний учащихся.
-Посмотрите на доску. Какие из этих уравнений вам уже знакомы?
-А как называются эти уравнения?
-Правильно это линейные уравнения с одной переменной.
-А кто скажет определение линейного уравнения с одной переменной?
-Уравнение вида ах=в, в котором x- переменная, а а и в – некоторые числа ,
называется линейным уравнением с одной переменной.
-Откройте учебники на стр. 27 , прочитайте это определение. Повтори…
-Приведите примеры линейных уравнений с одной переменной.
-Посмотрите на доску, перед вами линейные уравнения. Давайте вспомним как они решаются.
-Откройте тетради, запишите число, классная работа, тема: «Линейные уравнения с двумя переменными.»
-Все решают уравнения в тетрадях, а Оля пойдет к доске и решит с подробным объяснением первое уравнение:
(Перенесем слагаемое без х в правую часть уравнения, изменив при этом его знак на противоположный: 2х=10-6 , вычислим результат 2х=4. Разделим обе
части уравнения на 2, получим х=2).
-Второе уравнение пойдет решать Саша.
(Раскроем скобки, для этого умножим 2 на каждое слагаемое суммы (х+3), получим 2х+6+4=х-1. Перенесем слагаемые, содержащие х в левую часть уравнения, а не содержащие х – в правую часть, изменив при этом знаки на противоположные.
Приведем подобные слагаемые : х= — 11.
— Ребята , такие уравнения вы хорошо умеете решать.
— А какие свойства применяли при решении этих уравнений? (Если в уравнении слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.)
— А какое еще свойство вы применяли? (Если разделить или умножить обе части уравнения на одно и тоже отличное от нуля число, то получится уравнение равносильное данному.)
IV. Изучение нового материала.
-Ребята, а сегодня мы познакомимся с уравнениями нового вида.
-Пусть известно , что одно их двух чисел на 5 больше другого. Если первое число обозначить буквой х, а второе буквой у, то соотношение между ними можно записать в виде равенства х-у=5, содержащего 2 переменные. Такие уравнения называются уравнениями с двумя переменными или уравнениями с двумя неизвестными.
-Уравнениями с двумя переменными также являются уравнения:
5х+2у=10, -7х+у=5, х2+у2=20 , ху=12 (запись на доске).
-Из этих уравнений первые два имеют вид ах+ву=с, где а, в, с – числа. Такие уравнения называются линейными уравнениями с двумя переменными.
-Итак: Линейным уравнением с двумя переменными называется уравнение вида ах+ву=с где х и у – переменные, а, в, с, — некоторые числа .
-Откройте учебники на странице 188.Прочитайте определение про себя.
-Теперь прочитайте вслух.
-А кто из вас повторит его ?
-уравнение х-у=5, при х=8, у=3. Обращается в верное равенство 8-3=5.
Говорят, что пара значений переменных х=8, у=3 является решением этого уравнения. Записываю на доске:
8-3=5 — верное равенство.
Определение: Решением уравнения с двумя переменными называется пара
значений переменных, обращающая это уравнение в верное равенство.
-Прочитайте это определение на странице 188 про себя.
-Прочитайте его вслух.
-Кто повторит? Повтори…
-А какие еще пары чисел будут являться решениями уравнения х-у=5? (х=105, у=100; х=4, у= -1,…)
-Правильно решениями этого уравнения будут являться числа, разность которых равно 5.
-Иногда пары значений переменных записывают короче: (105; 100), (4;- 1). (Запись на доске).
-При такой записи необходимо знать, значение какой из переменных стоит на первом месте, а какой – на втором.
-в записи решений уравнения с переменными х и у на первом месте записывают значения х, а на втором – значение у.
-Уравнения с двумя переменными имеющие одни и те же решения, называют равносильными. уравнения с двумя переменными, не имеющие решений, также считают равносильными.
-Ребята, при решении линейных уравнений с одной переменной мы вспомним их свойства.
-Линейные уравнения с двумя переменными обладают такими же свойствами.
-Откройте учебники на стр. 189. Прочитайте эти свойства про себя.
-Рассмотрим уравнения 5х+2у=12.
-Воспользовались свойствами уравнений, выразим из этого уравнения одну переменную через другую , например у, через х. Для этого перенесем слагаемое 5х в правую часть уравнения изменив его знак.
-Разделим обе части этого уравнения на 2:
Уравнения 5х+2у=12 и
у= -2,5х+6 – равносильны.
-Пользуясь формулой у=2,5х+6, можно найти сколько угодно решений уравнения 5х+2у=12. Для этого достаточно взять произвольное х и вычислить соответствующее ему значение у.
Например: если х=2 , то у= -2,5.2+6=1.
если х=0,4 то у= -2,5*0,4+4=5.
Пары чисел (2; 1), (0,4; 5) – решение уравнения 5х+2у=12.
Это уравнение имеет бесконечно много решений.
V .Первичное закрепление.
-Что же называется линейным уравнением с двумя переменными?
-Выполним № 1092 на странице 190 устно.
-Является ли первое уравнение 3х-у=17 линейным? (Да).
-Почему? (Т.к. имеет вид ах+ву=с)
-А второе упражнение? (Нет).
-Почему? (Т.к. уравнение х2- 2у=5 не приводится к виду ах+ву=с, х имеет
показатель степени 2).
-А теперь запишите № 1094.
-Как ответить на этот вопрос? (Поставить значение х и у в уравнение. Если получится верное равенство, то х и у является решением уравнения)
-Все решайте в тетрадях, а……. у доски.
6=6 – верное равенство.
-А какие еще числа могут быть решениями этого уравнения х+у=6. (Дающие в сумме 6: 4 и 2, 3 и 3 и т.д.).
-Запишите любые 2 решения этого уравнения.
-Не забывайте, что значение х пишется на первом месте а у – на втором месте.
-А теперь выполним № 1096. запишите.
-Что нужно сделать, чтобы ответить на вопрос? (Подставить значения х и у в уравнение и посмотреть, получится ли верное равенство).
а).Организация самостоятельной работы.
-Все решают в тетрадях, а к доске пойдут Лена и Оля.
-Саша проверит первые 2 пары, а Катя вторые 2 пары.
-А потом проверим.
б) Проведение самостоятельной работы.
10=10 – верное равенство 10=10 верное равенство
Ответ: является Ответ: является
10=10 – верное равенство 11,5=10 – неверное равенство
Ответ: является Ответ: не является.
в) Проверка самостоятельной работы.
-Давайте проверим правильно ли выполнила Оля.
-У кого другой ответ?
-У кого другой ответ?
-А теперь выполним № 1099.
-Что нужно сделать, чтобы выразить у через х? (Представить, что х известное
число и найти у )
-Пойди к доске реши с объяснением, а все решают в тетрадях.
(Одночлен 3у является неизвестным вычитаемым. Чтобы найти неизвестное
вычитаемое, надо из уменьшаемого вычесть разность 3у=4х-12 .
Разделим обе части уравнения на 3, получим:
А теперь выполним пункт б, Сережа иди к доске.
(Одночлен 4х является неизвестным уменьшаемым, чтобы его найти, надо к
разности прибавить вычитаемое: 4х=12+3у. Разделим обе части уравнения на 4
-Правильно. Молодец. Садись.
VI. Подведение итогов.
-Какой вид имеет линейное уравнение с двумя переменными ? (ах+ву=с).
-Что называется решением линейного уравнения с двумя переменными?
-Приведите примеры таких уравнений.
-Какими свойствами обладают уравнения с двумя переменными?
К тренировочным относятся задания на распознавание различных объектов и их свойств. Тренировочные самостоятельные работы состоят из однотипных заданий, содержащих существенные признаки и свойства данного определения, правила. Конечно, эта работа мало способствует умственному развитию детей,
но она необходима, так как позволяет выработать основные умения и навыки и тем самым создать базу для дальнейшего изучения математики.
При выполнении тренировочных самостоятельных работ учащимся еще
необходима помощь учителя. Можно разрешить пользоваться и учебником, и записями в тетрадях, таблицами и т. п. Все это создает благоприятный климат для слабых учащихся. В таких условиях они очень легко включаются в работу и
Тема: Графический способ решения уравнений.
Цель: добиться осознанного усвоения и запоминания графического
способа решения уравнений, сформировать практические умения и
Развивать наглядные представления;
Оборудование: табличка «абсцисса», таблица с графиками.
I. Организационное начало.
б) Проверка готовности рабочих мест.
II. Сообщение темы и цели.
— Сегодня мы с вами научимся решать уравнения с помощью графиков.
III. Актуализация знаний учащихся.
а) Что является графиком данной функции:
y=2х (линейная функция, график- прямая)
y=х2 (график – парабола, ветви направлены вверх)
y=3/x (гипербола , ветви расположены в I и III четверти)
y=х3(кубическая парабола, расположена в I и III четверти)
б) По чертежу определите общий вид уравнения, который задает эту
(I — кубическая парабола у=х3; II – парабола – у=х3; III – прямая, у=кх+в;
IV гипербола у= k/x
в) Заполнить таблицу : у= 2х2-5
IV Изучение нового материала
1. Объяснение материала.
— Откройте тетради. Запишите число, тему урока.
— Рассмотрим уравнение x2=6/x. Если обе части этого уравнения умножить на х, то получим уравнение х3=6, способ решения которого нам неизвестен.
Однако с помощью графиков можно найти приближенные значения корней уравнения x2=6/x.
Построим в одно координатной плоскости графики функции у=х2 и у =6/x.
1. у=х2 — Д(у)= R. Графиком является парабола, ветви которой
направлены вверх, т.к. к>0. Составим таблицу:
2. y=6/x — Д(у) – любое , кроме 0. Графиком является гипербола, ветви
которой находятся в I и III четвертях.
Составим таблицу значений :
|x |-6 |-3 |-2 |-1 |1 |2 |3 |6 |
|y |-1 |-2 |-3 |-6 |6 |3 |2 |1 |
Эти графики пересекаются в одной точке. Абсцисса точки пересечения есть, то значение переменной х, при котором выражение х2 и 6/x принимают равные значения. Значит, абсцисса точки пересечения графиков функций y=x2 и y=6/x является корнем уравнения (x2=6/x). Из рисунка видно, что приближенное значение корня равно 1,8. Примененный способ решения уравнения называют графическим. Абсцисса точки пересечения – корень уравнения.
-Запишите это предложение в тетрадь.
Посмотрите как пишется слово абсцисса.
— Найдите № 622 стр. 133. Прочитайте задание . К доске пойдет … , а
остальные выполняют в тетрадях.
|x |-1 |-2 |0 |1 |2 | |x |0 |1 |
|y |1 |4 |0 |1 |4 | |y |2 |3 |
2 и — 1 – являются решением уравнения
б) Посмотрите на следующее уравнение
— Какие преобразования мы должны выполнить?
— К доске пойдут…. ..… Одна составляет таблицу для у=х2, другая у=-1,5х+2,5.
— Затем графики постройте в одной координатной плоскости и найдете точки пересечения.
|x |-1 |-2 |0 |1 |2 | |x |0 |1 |
|y |1 |4 |0 |1 |4 | |y |2,5 |1 |
Теперь стройте графики.
1 и – 2,5 – является решением уравнения.
Ответ: х=1, х = — 2,5.
-А теперь найдите № 624. Сейчас я посмотрю , как вы усвоили материал. Два
человека решают на переносных досках. Затем , проверим.
Первый вариант решает 8/x=-x+6, второй 8/x=x2.
|x |-1|-2|-4|1 |2 |4 |8 | | |x |0 |1 |
|y |-8|-4|-2|8 |4 |2 |1 | | |y |6 |5 |
2 и 4 – является решением уравнения
|x |-1|-2|-4|1 |2 |4 |8 | | |x |-1|-2|0 |1 |2 |
|y |-8|-4|-2|8 |4 |2 |1 | | |y |1 |4 |0 |1 |4 |
2 – является решением уравнения
VI. Подведение итогов.
— Что же является корнем уравнения? (абсцисса точки пересечения)
— Какие преобразования можно сделать, если уравнение имеет вид: х2+5х-7=0.
VII. Задание на дом.
-Откройте дневники. Запишите задание на дом? № 627 (а) и №625(б)
-Посмотрите. Кому что не понятно ?
Очень важны так называемые повторительные (обзорные или тематические) работы. Перед изучением новой темы учитель должен знать, подготовлены ли школьники, .есть ли у них необходимые знания, какиепробелы смогут затруднить изучение нового материала.
Самостоятельными работами развивающего характера могут быть домашние задания по составлению докладов на определенные темы, подготовка к олимпиадам, научно-творческим конференциям, проведение в школе «дней математики», сочинение математических игр, сказок, спектаклей и др.
На уроках — это самостоятельные работы, требующие умения решать
Тема: Обобщающий урок по теме «Квадратные уравнения»
Цель: Закрепить теоретические и практические знания и умения
учащихся при решении квадратных уравнений.
Развивать речь, мышление, самостоятельность.
Воспитывать интерес к предмету, усердие и активность.
Оборудование: таблицы, рисунок
1. Организационное начало урока.
б) Проверка готовности рабочих мест.
2. Сообщение темы и цели.
— Сегодня мы проведем урок соревнование. И выясним ваши знания по теме
3. Закрепление изученного материала.
— Сейчас мы с вами разделимся на две команды. 1 ряд и половина второго ряда
– 1 команда. 3 ряд и другая половина второго ряда – 2 команда.
— А теперь выберем капитанов.
— И так, в первом конкурсе я хочу выяснить, на сколько хорошо вами усвоен
теоретический материал темы «Квадратные уравнения».
— Я попрошу выйти к доске по одному представителю каждой команды.
— Каждой команде предлагается серия вопросов.
— Я буду задавать вопрос, а вы следовательно на него отвечать.
— Но остальные так же должны принимать участие в работе.
— У вас на партах лежат красные и синие таблички.
— Если ученик дает правильный ответ, то поднимаете синий флажок, а если не
верный – красный флажок.
— И тем самым я смогу увидеть, как же каждый из вас знает теоретический материал.
— Побеждает та команда, которая наберет большее количество очков, давая правильные ответы.
Вопросы 1 команде.
1. Дай определение квадратным уравнениям.
2. Если в квадратном уравнении ах + вх + с = 0 хотя бы один из
коэффициентов в или с равны 0, то как называется такое уравнение.
3. Что называют дискриминантом квадратного уравнения.
4. Приведи конкретный пример квадратного уравнения, второй коэффициент равен 17.
5. Сформулируй и докажи теорему, обратную теореме Виета.
— Хорошо ученик первой команды за блиц – турнир получит 3 очка, так как были допущены ошибки при доказательстве теоремы, обратной теоремы Виета.
— А так же были неточности в определении квадратного уравнения.
— Что касается работы класса, то нужно быть активнее.
Вопросы 2 команде.
1. Сколько корней может иметь квадратное уравнение.
2. Сформулируй и докажи теорему Виета. Чему равна сумма корней квадратного уравнения ах + вх + с = 0
3. Приведи пример квадратного уравнения.
4. Напиши формулу корней квадратного уравнения
5. Чем являются числа а, в и с в квадратном уравнении?
— Хорошо ученик 2 команды получит 4 очка, так как была допущена шибка в
доказательстве теоремы Виета.
— Итак, проведя этот конкурс мы с вами еще раз повторили теоретический материал темы «Квадратные уравнения» и увидели все пробелы в знаниях этого материала.
2) Конкурс «Кто быстрее сядет в ракету?»
-Сейчас мы проведем следующий конкурс «Кто быстрее сядет в ракету»
Посмотрите на доску
на ней мы видим ракету
и ступени, ведущие к ракете.
-сейчас к доске выйдут
два ученика — представители
-Командам предлагается серия заданий. Решив первое задание вы записываете ответ на первую ступень ракеты. Садитесь и вас сменяет следующий участник вашей команды.
-Но вы доберетесь до ракеты лишь в том случае, если все ответы будут
-Поэтому вы можете обращаться к помощи команды. Они самостоятельно решают задание, сверяют свой ответ с вашим и подписывают соответствующую табличку.
-Приступим к выполнению конкурса.
|1. Найти значение выражения. |
|- х + 2х – 2 при х=-1 |2х + 5х –2 при х=1 |
|2. Реши уравнение. |
|х + х – 2 = 0 |х – 3х + 2 = 0 |
|3. При каком значении R уравнение имеет 1 корень? |
|16х + Rх + 9 = 0 |25х + Rх + 2 = 0 |
|х + вх + 24 = 0 |х – 7х + с = 0 |
|Если корень х 1= 8 |если корень х1 = 5 |
|найти х2 и коэффициент в |найти х2 и коэффициент с |
-Хорошо, в этом конкурсе победила 2 команда, так как ее участники показали блестящее умение выполнения практических упражнений.
3)Конкурс «Составь уравнение»
— А теперь следующий конкурс.
— На доске записаны по 1 уравнению для каждой команды, у которых
коэффициенты пропущены, в место их пустые клеточки.
— Сейчас по одному из участников команды, выходят к доске подбирают в уме один из корней квадратного уравнения и соответственно коэффициенты, чтобы
после выполнения действия выполнялось равенство.
— Затем следующий ученик решает их.
— А остальные ученики решают уравнения в тетрадях и правильность ответов подтверждают сигнальными карточками.
— Приступаем к выполнению задания.
— И так в этом конкурсе каждая команда получит по 1 очку, так как все справились с заданием.
— Необходимо решить уравнение и выполнить проверку по теореме, обратной теореме Виета.
— Эту самостоятельную работу будем проводить по 2 вариантам, за Олей – 1 в,
за Сашей – 2 в (аналогично остальные).
— За эту самостоятельную работу я выставляю оценки в журнал.
IV Подведение итогов.
Контрольные работы являются необходимым условием достижения планируемых результатов обучения.
По существу разработка текстов контрольных работ должна быть одной из основных форм фиксирования целей обучения, в том числе и минимальных.
Поэтому, во-первых, контрольные задания должны быть равноценными по содержанию и объему работы; во-вторых, они должны быть направлены на отработку основных навыков; в-третьих,— обеспечивать достоверную проверку уровня обучения; в-четвертых, они должны стимулировать учащихся, позволять им продемонстрировать прогресс в своей общей подготовке.
|1. |А. Н. Бекаревич. Уравнения в школьном |Минск. 1968 г. |
|2. |В. С. Гиренович Математика в школе |№ 3 Виды |
|3. |Г. И. Глейзер История математики в школе |Москва «Просвещение»|
| |VII – VIII классы |1982 г. |
|4. |С. И. Демидова А. О. Денищева. |Москва «Просвещение»|
| |Самостоятельная деятельность учащихся при|1985 г. |
|5. |В. Г. Коваленко Дидактические игры на |Москва «Просвещение»|
| |уроках математики |1990 г. |
|6. |В. И. Крупин О. Б. Енишев Учить |Москва «Просвещение»|
| |школьников учиться математике |1990 г. |
|7. |В. И. Мишин Методика преподавания |Москва «Просвещение»|
| |математики в средней школе |1987 г. |
|8. |А. А. Столяр Р. С. Черкасов Общая |Москва «Просвещение»|
| |методика преподавания математики |1985 г. |
|9. |С. А. Пиляковский Алгебра 8 класс |Москва «Просвещение»|
|10.|Г. А. Пичурина Математика |№ 7 Практикум по |
|11.|Е. В. Рисс Математика |№ 6 Дидактические |
| | |материалы по алгебре|
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
По теме: методические разработки, презентации и конспекты
Практико-ориентированная работа «Методика обучения решению заданий с параметром»
Презентация «Методика обучения решению простых задач»
Презентацию можно использовать на учебной дисциплине «Методика преподавания начального курса математики» по теме » Методика обучения решению простых задач».
Актуальность совершенствования методики обучения решению задач по физике
Для решения любой технологической задачи требуются определенные знания. В обратном порядке можно выделить этапы решения технологической задачи: 1.Для решения технологической задачи вначале ре.
Методика обучения решению задач на основе таблицы Д.Пойа
Решение задач вызывает трудности у многих школьников, что может быть связано с процессом обучения, т.е. от методики обучения. В данной работе дается методика, основанная Д.Пойа. Чем она интересна.
Методика обучения решению сюжетных задач в курсе математики 5-6 классов
С давних пор задачи играют огромную роль в обучении. Решение задач выступает и как цель, и как средство обучения. Умение ставить и решать задачи является одним из основных показателей уровня развития .
Некоторые особенности методики обучения решению уравнений в 5 классе.
Материал содержит советы по методике изучения темы «Уравнения» в 5 классе и приложения для подготовки и проведения зачёта, подсказанные собственным опытом.
📽️ Видео
Как научить вашего ребенка решать задачи. Методика обучения решению задач. Методика ШаталоваСкачать
Как научить ребёнка решать уравнения без ошибокСкачать
РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать
Простые уравнения. Как решать простые уравнения?Скачать
ТЕСТ Правда или ЛОЖЬ 😀 Тесты на логику от бабушки ШошоСкачать
Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решают уравнения в России и СШАСкачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Математика базовая и математика углубленная: методика обучения решению уравненийСкачать
Считаем в уме за секунду. #математика #арифметика #счет #ментальнаяарифметика #simplemathСкачать
Начальная школа. Лысенкова С.Н. Формулы вычисления Р и S. Решение уравненийСкачать