- Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.
- Примеры использования метода замены переменной
- Метод замены переменных при решении уравнений и неравенств
- Метод замены переменных
- Пример №350.
- Пример №351.
- Пример №352.
- Пример №353.
- Пример №354.
- Пример №355.
- Пример №356.
- Урок 1. Биквадратные уравнения. Замена переменной в уравнениях. Алгебра 8 класс.
- Урок 2. Биквадратные уравнения. Замена переменной в уравнениях. Алгебра 8 класс.
- Урок 3. Замена переменной. Решение уравнений, приводящихся к квадратным. Алгебра 8 класс.
- Урок 4. Замена переменной в уравнениях, приводящихся к квадратным.
- 🎦 Видео
Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.
Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.
У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.
Заменим выражение (x+frac) буквой (t).
Получилось обычное квадратное уравнение! Решив его, найдем чему равно (t), после чего, сделав обратную замену, вычислим (x).
Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:
Попробуем сделать замену здесь.
Заменим выражение (sin x) буквой (t).
Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.
Видео:Решение уравнения методом замены переменнойСкачать
Примеры использования метода замены переменной
Заметим, что (x^4=(x^2 )^2) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.
Теперь используем метод замены.
Вводим новую переменную, заменяя (x^2) на (t).
Мы нашли чему равно (t), но найти-то надо иксы! Поэтому делаем обратную замену.
Ответ: (±1); (±) (frac) .
Весьма частая ошибка при использовании этого метода: забыть «вернуться к иксам», то есть не сделать обратную замену. Помните – нам нужно найти (x), а не (t)! Поэтому возврат к (x) — строго обязателен!
Пример. Решить неравенство: (log^2_3x-log_3x-2>0)
Приступим к решению.
Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к совокупности , имеющей такое же решение, и сделаем обратную замену.
Видео:Алгебра 9 класс. Решение систем уравнений методом замены переменныхСкачать
Метод замены переменных при решении уравнений и неравенств
Метод замены переменных
Этот распространённый метод используется для разных целей: упрощение задачи и повышение её наглядности, придание уравнению (неравенству, системе и проч.) более симметричного вида, сведение одного уравнения к системе нескольких уравнений, рационализация иррациональностей (см. пункт 3.3) и т.д. Иными словами, введение новых переменных производится в тех случаях, когда есть возможность свести задачу к другой, для которой существует более эффективный способ решения.
Существуют виды уравнений, для которых разработаны специальные подстановки, позволяющие наиболее оптимально решать эти уравнения (например, симметрические и возвратные уравнения, однородные уравнения и многие другие). Рассмотрим дополнительно группу примеров, иллюстрирующих различные цели использования этого подхода.
Начнём с примера, в котором при помощи замены неизвестной рациональное неравенство сводится также к рациональному, но более простому алгебраическому неравенству.
Пример №350.
Решение:
Положим . Тогда необходимо решить неравенство . Выполнив обратную подстановку, получим квадратное уравнение , решив которое, приходим к ответу. Ответ:
В следующем примере дробно-рациональное уравнение заменой сводится к целому алгебраическому уравнению.
Пример №351.
Решить уравнение
Решение:
Обозначим разность через , тогда уравнение перепишется в виде Это уравнение имеет два корня и , что приводит к совокупности уравнений
Первое уравнение даёт корни , а второе — которые и будут решениями исходного уравнения.
В некоторых случаях алгебраическую задачу (даже если в её условиях не содержится радикалов) с помощью специальных тригонометрических подстановок бывает целесообразно свести к тригонометрической задаче, и далее уже решать её методами тригонометрии.
Пример №352.
Известно, что и . Чему равно значение ?
Решение:
Воспользуемся тем, что если два действительных числа X, у удовлетворяют равенству
где — заданное число, то и можно представить в тригонометрическом виде , где . В самом деле, уравнение (1) задаёт на плоскости окружность радиуса с центром в начале координат. При изменении от до точка с координатами ровно один раз обходит окружность, и таким образом между точками окружности и полуинтервалом оказывается установлено взаимно однозначное соответствие. Это означает, что каждому значению из соответствует единственная пара чисел , удовлетворяющих равенству (1), и наоборот, каждой паре чисел, удовлетворяющих (1), соответствует единственное значение из .
Итак, поскольку числа удовлетворяют равенству , то найдётся такое число , что , . Аналогично, поскольку числа удовлетворяют равенству , то найдётся такое число, что , . При этом условие примет вид
Выполнив тригонометрическую подстановку в искомом выражении , получим:
Введение новых переменных может быть вызвано необходимостью понизить степень уравнения, упростив при этом решение задачи.
Пример №353.
Решить уравнение
Решение:
Сведём данное уравнение 4-й степени к квадратному уравнению. Для этого вначале умножим обе части уравнения на 12 и приведём его к виду
Затем сделаем подстановку , что приведёт к уравнению
Сделав ещё одну подстановку , сведём окончательно данное биквадратное уравнение к квадратному уравнению , решив которое, находим корни . Тогда и
Ответ:
В следующем примере используется симметризирующая подстановка. Название говорит само за себя: уравнению придаётся более «симметричный» вид. Новая переменная является средним арифметическим входящих в уравнение выражений. При её применении уравнение 4-й степени общего вида приводится к более простому частному случаю, а именно, симметризация уравнения позволяет «убрать» из уравнения нечётные степени неизвестной, оставив только чётные и превратив его, таким образом, в биквадратное уравнение.
Пример №354.
Решение:
Выполним симметризирующую подстановку
Тогда уравнение примет вид
Ответ:
6.Близко к методу введения новых переменных стоит так называемый метод введения параметра. Не всегда введение параметра усложняет задачу. На примере, рассмотренном ниже, видно, как включение параметра в уравнение вместо числового коэффициента позволяет лучше «разглядеть» способ дальнейшего его решения — рассмотрение уравнения как квадратного относительно введённой величины.
Пример №355.
Решение:
Введём в уравнение параметр, положив :
Рассмотрим теперь это уравнение как квадратное относительно . Приведём его к стандартному виду и вычислим дискриминант Найдём корни:
т.е. или . Параметр к этому моменту сыграл свою положительную роль, позволив свести решение кубического относительно уравнения к совокупности двух уравнений более низкой степени: квадратного и линейного.
Заменяя числом , получим совокупность
Отсюда находим решения:
Замечание. В формуле корней квадратного уравнения более корректным было, вообще говоря, написать
Однако когда ищутся оба корня, то использование формул (1) и (2) приводит к одному результату. Именно поэтому часто в подобных ситуациях модуль опускают.
7.Отметим, что, вообще говоря, не всегда в задаче нужно полностью переходить к новым переменным. Иногда имеет смысл, вводя новую переменную, сохранить в задаче и первоначальную переменную, т.е. сделать частичную замену переменных. Так, сведением к системе уравнений, решаются некоторые уравнения. Рассмотрим в качестве пояснения пример.
Пример №356.
Решение:
Так как не является корнем, то уравнение можно привести к равносильному виду
Положим , тогда уравнение сведётся к равносильной ему системе
Решая эту систему относительно и , приходим к ответу:
Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:
Эти страницы возможно вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Алгебра Система уравнений Метод замены переменной № 6.22 9 классСкачать
Урок 1. Биквадратные уравнения. Замена переменной в уравнениях. Алгебра 8 класс.
Решение уравнений, приводящихся к квадратным. Биквадратные уравнения. Замена переменной в уравнениях. Какое уравнение является биквадратным. Определение биквадратного уравнения. Как решать биквадратное уравнение. Как найти корни биквадратного уравнения. Уравнения, приводящиеся к квадратным путем замены переменной. Квадратные уравнения. Алгебра 8 класс. Примеры с решением.
Видео:Зачётный способ решить дробно рациональное уравнение методом заменыСкачать
Урок 2. Биквадратные уравнения. Замена переменной в уравнениях. Алгебра 8 класс.
Биквадратные уравнения. Уравнения 4-й степени. Замена переменной в уравнениях. Решение уравнений, приводящихся к квадратным, путем замены переменной. Какое уравнение является биквадратным. Определение биквадратного уравнения. Как решать биквадратное уравнение. Как найти корни биквадратного уравнения. Алгебра 8 класс. Примеры с решением.
Урок 3. Замена переменной. Решение уравнений, приводящихся к квадратным. Алгебра 8 класс.
Решение уравнений, приводящихся к квадратным путем замены. Алгебра 8 класс. Замена переменной в уравнениях. Примеры с решением.
Урок 4. Замена переменной в уравнениях, приводящихся к квадратным.
Решение уравнений, приводящихся к квадратным путем замены. Алгебра 8 класс. Замена переменной в уравнениях. Примеры с решением.
Пример 1: Решите уравнение методом замены переменной:
Если необходимо решить уравнение вида (x+A)(x+B)(x+C)(x+D) = m где А, В, С, D и m — некоторые константы, то группируем попарно скобки таким образом, чтобы была равна сумма констант, входящих в эти скобки.
Например, если А+D = В+C, то записываем: (x+A)(x+D)(x+B)(x+C) = m
- Попарно раскрываем скобки: (x2+Ax+Dх + AD)(x2+Bx+Cх +DC) = m (x2+(A+D)х + AD)(x2+(B+C)х + DC) = m
- Делаем замену x2+(A+D)х = t Получаем уравнение (t + AD)(t + DC) = m
- После раскрытия скобок получим обычное квадратное уравнение.
Урок 5. Решение дробно-рациональных уравнений методом замены.
Решение дробно-рациональных уравнений методом замены. Алгебра 8 класс. Как сделать замену в дробно-рациональном уравнении? Решение рационального уравнения заменой. Обратные числа. Какие числа называются взаимно обратными? Взаимно-обратные дроби. Как правильно сделать замену взаимно-обратных дробей. Примеры с решением. Задания с объяснением.
Урок 6. Решение дробно-рациональных уравнений методом замены переменной. Алгебра 8 класс.
Решение дробно-рациональных уравнений методом замены. Задания с *. Алгебра 8 класс. Как сделать замену в дробно-рациональном уравнении? Как правильно возвести в квадрат при замене переменной. Как определить что заменять и какую замену делать. Решение рационального уравнения заменой. Примеры с решением. Задания с объяснением.
Урок 7. Решение уравнений методом замены. Как понизить степень уравнения заменив переменную?
Решение дробно-рациональных уравнений методом замены. Как понизить степень уравнения заменив переменную? Задания с *. Алгебра 8 класс. Как сделать замену в рациональном уравнении? Уравнения 4-й степени. Понизить степень уравнения, сделав замену. Как определить что заменять и какую замену делать. Решение рационального уравнения заменой. Примеры с решением. Задания с объяснением.
Урок 8. Замена переменной. Решение уравнений. Однородные уравнения.
Однородные уравнения второй степени. Определение однородного уравнения. Методы решения однородных уравнений. Как понять, что уравнение однородное. Решение однородных уравнений методом замены переменной. Решение уравнений методом замены переменной. Решить уравнение. Решить заменой. Примеры с решением. Задания с объяснением. Алгебра 8 класс.
🎦 Видео
Решение биквадратных уравнений. 8 класс.Скачать
решение уравнения с заменой переменнойСкачать
Математический анализ, 20 урок, Метод замены переменнойСкачать
Метод замены переменной в уравнениях. Часть 1.Скачать
9 класс. Алгебра. Решение уравнений методом замены переменной.Скачать
Решение системы уравнений методом Крамера 2x2Скачать
Решение уравнений методом замены переменной.Скачать
Сложные показательные уравнения: примеры и способы решенияСкачать
8 класс "Решение уравнений методом замены переменной"Скачать
Как чжанчжуан лечит?Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Решение систем уравнений методом подстановкиСкачать
Дифференциальное уравнение.Замена переменныхСкачать
Дробно-рациональные уравнения. 8 класс.Скачать