2. Метод разложения в ряд Тейлора
Одним из старейших методов решения дифференциальных уравнений является метод разложения в ряд Тейлора.
Обратимся к скалярному случаю. Пусть требуется найти решение уравнения (1.1)
для заданного значения при начальном условии . Потребуем, чтобы ƒ была аналитична в точке . Дифференцируя уравнение по t, будем иметь
Подставляя , последовательно получаем
Таким образом, при достаточно малом T приближенное решение в окрестности t0 можно представить в виде ряда Тейлора
Оборвем (усечем) ряд (2.2) на p-м члене. Тогда получим приближенную формулу р-порядка
Нетрудно видеть, что при малых T погрешность Δx (ошибка усечения) будет определяться главным образом первым членом ряда (2.4):
Его называют главным членом погрешности.
Если для ряд Тейлора (2.2) расходится или ошибка приближенной формулы (2.3) довольно большая, то прибегают к так называемому пошаговому интегрированию. Разбивают на малые отрезки , где , и последовательно получают приближенные решения по формуле
где — n-й шаг интегрирования.
Рассмотрим частные случаи. Для p = 1 и p = 2 с постоянным шагом h имеем формулы
Главным недостатком метода разложения в ряд Тейлора является то, что для получения производных (2.1) необходимо знать производные от ƒ как функции t и x. Очевидно, если ƒ — сложная функция, получение этих производных может представлять собой весьма утомительное занятие. В связи с этим методы разложения в ряд Тейлора редко используются на практике.
Впрочем, в небесной механике имеет место ряд важных с прикладной точки зрения задач, где, используя специфику дифференциальных уравнений, удается получить достаточно простые рекуррентные соотношения для временных производных в разложениях Тейлора. В 1957 г. К. Стеффенсен путем введения новых вспомогательных переменных вывел подобные соотношения для численного интегрирования уравнений планетной задачи.
Рассмотрим идею метода Стеффенсена на примере нормализованных уравнений задачи двух тел:
Если ввести вспомогательные переменные и , то уравнение (2.9) можно привести к дифференциально-алгебраической системе уравнений с квадратичными правыми частями
Тогда, подставляя в (2.10) степенные ряды для и по малому параметру и приравнивая коэффициенты при одинаковых степенях , получим для них рекуррентные формулы:
При этом Коэффициенты нулевого порядка вычисляются по начальным данным .
Подобный подход также применяется и для численного интегрирования более сложных дифференциальных уравнений небесной механики, в частности, задачи нескольких тел в классической постановке.
- Численное решение математических моделей объектов заданных системами дифференциальных уравнений
- Введение:
- Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
- Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
- Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
- Решение краевой задачи с поточно разделёнными краевыми условиями
- Вывод
- Метод Тейлора первого порядка
- 🔥 Видео
Видео:Частное решение ДУ, с помощью рядаСкачать
Численное решение математических моделей объектов заданных системами дифференциальных уравнений
Введение:
При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.
Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.
Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.
В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.
Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).
Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:
и начальным условиям
Перед решением эта задача должна быть переписана в виде следующей СДУ
(1)
с начальными условиями
Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.
Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.
Функция func должна возвращать список из n значений функций при заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).
Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений при t=t0.
Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.
Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле
Они могут быть векторами или скалярами. По умолчанию
Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.
Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.
При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.
При численном решении задачи Коши
(2)
(3)
по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.
Приближенное решение задачи (2), (3) в точке обозначим . Метод сходится в точке если при . Метод имеет р-й порядок точности, если , р > 0 при . Простейшая разностная схема для приближенного решения задачи (2),(3) есть
(4)
При имеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема в (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.
Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема
(5)
а на этапе корректора (уточнения) — схема
В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:
(6),
Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если при имеем явный метод Рунге—Кутта. Если при j>1 и то определяется неявно из уравнения:
(7)
О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры определяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)
Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка
(8)
Метод Рунге—Кутта— Фельберга
Привожу значение расчётных коэффициентов метода
(9)
С учётом(9) общее решение имеет вид:
(10)
Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.
Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.
Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].
Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид
где – радиус вектор движущегося тела, – вектор скорости тела, – коэффициент сопротивления, вектор силы веса тела массы m, g – ускорение свободного падения.
Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить , то в координатной форме мы имеем систему уравнений:
К системе следует добавить начальные условия: (h начальная высота), . Положим . Тогда соответствующая система ОДУ 1 – го порядка примет вид:
Для модельной задачи положим . Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.
Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787
Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:
def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6
Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:
Время на модельную задачу: 0.259927
Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.
Решение краевой задачи с поточно разделёнными краевыми условиями
Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:
(11)
Для решения задачи (11) используем следующий алгоритм:
1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Введем обозначение для решения задачи Коши:
2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Введем обозначение для решения задачи Коши:
3. Решаем первые три однородные уравнения системы (11) с начальными условиями
Введем обозначение для решения задачи Коши:
4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
где p2, p3 — некоторые неизвестные параметры.
5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
(12)
Решая (12), получим соотношения для p2, p3.
По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:
y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878
Вывод
Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.
3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.
Видео:Дифференциальное уравнение ведет к разложению в ряд Тейлора и сумме ряда?Скачать
Метод Тейлора первого порядка
Министерство образования Российской Федерации
Воронежский государственный университет
Математический факультет
Численные методы решения обыкновенных дифференциальных уравнений
Методические указания
по курсу «Методы вычислений»
для студентов IV-V курсов
всех форм обучения
Воронеж
Настоящие методические указания предназначены для выполнения лабораторной работы «Численные методы решения обыкновенных дифференциальных уравнений» по курсу «Методы вычислений» студентами IV-V курсов дневного и вечернего отделений математического факультета. Разработка может быть использована для самостоятельной работы студентов и подготовке к экзамену.
Разработка представляет собой существенно переработанный и дополненный вариант методических указаний .
1. Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях. / Под ред. В.А.Садовничего: Учеб. пособие.– М.: Высш. шк., 2000. – 190 с.
2. Арушанян И.О., Чижонков Е.В. Материалы семинарских занятий по курсу «Методы вычислений» / Под ред. О.Б.Арушаняна: Учеб. пособие. – 2-е изд. – М.: Изд-во ЦПИ при механико-математическом ф-те МГУ, 1999. – 96 с.
3. Плис А.И., Сливина Н.А. Лабораторный практикум по высшей математике: Учеб. пособие для втузов. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1994. – 416 с.
4. Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. – М.: Мир, 1990. – 512 с.
5. Аброськина Г.С., Трофимов В.П. Методические указания по методам вычислений и вычислительной практике. Часть III: — Воронеж.: ВГУ, 1989. – 24 с.
1. Постановка задачи.
Пусть требуется найти дифференцируемую при функцию , удовлетворяющую дифференциальному уравнению при и начальному условию при :
Будем считать, что правая часть дифференциального уравнения удовлетворяет условиям теоремы существования и единственности решения задачи Коши (1).
Численное решение задачи (1) состоит в построении таблицы приближенных значений точного решения в точках отрезка . При этом величину называют локальной алгоритмической ошибкой численного метода при . В реальных вычислениях всегда присутствует ошибка округления и фактически будут вычислены .
Существует множество методов решения задачи Коши (1). Мы рассмотрим два важнейших класса численных методов: методы, основанные на разложении решения в ряд Тейлора, и методы полиномиальной аппроксимации.
Выберем . Точки называются узлами сетки, а величина — шагом сетки.
2. Метод Тейлора.
Предполагая, что точное решение задачи (1) является аналитической функцией в некоторой окрестности точки , разложим в ряд Тейлора в точке :
Заметим, что и, следовательно,
Производные вычисляются по правилам дифференцирования сложной функции:
Используя (3), перепишем (2) при , в виде:
где — члены высших порядков. Заменив в (4) на и отбросив , получим алгоритм метода Тейлора
Обычно алгоритм (5) записывают в виде:
Метод (6) называют методом Тейлора порядка .
Замечания:
1. Для метода Тейлора порядка остаточный член в формуле (4) имеет вид при . Следовательно, если в алгоритме (6) , то локальная алгоритмическая ошибка метода имеет порядок .
2. Общее количество шагов численного решения задачи (1) на отрезке определяется отношением . При заданной точности приближенного решения число шагов уменьшается с увеличением порядка метода Тейлора. Но увеличение порядка метода приводит к росту числа членов в формуле (7). Для численной реализации алгоритма (6) нужно вычислять значений функции и всех ее частных производных при . Вычисление большого числа частных производных является трудной задачей. Поэтому методы Тейлора выше четвертого порядка в вычислительной практике обычно не используются.
Метод Тейлора первого порядка.
Из формулы (6) при получаем
Этот алгоритм называется явным методом Эйлера.Здесь .
🔥 Видео
Применение степенных рядов к решению дифференциальных уравнений.Скачать
Формула Тейлора за 3 минуты - bezbotvyСкачать
301 Нахождение решения дифференци ального уравнения в виде степенного рядаСкачать
Математический анализ, 39 урок, Формулы и ряды Тейлора и МаклоренаСкачать
Решение дифференциальных уравнений с помощью степенных рядов -3Скачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Задача на формулу Тейлора - bezbotvyСкачать
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
10. Ряд Тейлора. Ряд МаклоренаСкачать
[Calculus | глава 11] Ряд ТейлораСкачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Приближенное вычисление интеграла с помощью ряда ТейлораСкачать