Метод релаксации решения нелинейных уравнений

Лабораторная работа 8. Численное решение нелинейных уравнений

Цель работы: Изучение методов численного решения нелинейных уравнений — методов бисекции, хорд, простой итерации, релаксации, метода Ньютона и его модификаций; исследование скорости сходимости итерационных процедур; изучение метода Эйткена ускорения сходимости; сравнение числа итераций, необходимого для достижения заданной точности вычисления разными методами.

8.1 Краткие теоретические сведения

Численное решение нелинейного уравнения F(x)=0 заключается в вычислении с заданной точностью значения всех или некоторых корней уравнения и распадается на несколько задач: во-первых, надо исследовать количество и характер корней (вещественные или комплексные, простые или кратные), Во-вторых, определить их приближенное расположение, т. е. значения начала и конца отрезка, на котором лежит только один корень, В-третьих, выбрать интересующие нас корни и вычислить их с требуемой точностью. Вторая задача называется Отделением корней. Решив ее, по сути дела, находят приближенные значения корней с погрешностью, не превосходящей длины отрезка, содержащего корень. Отметим два простых приема отделения действительных корней уравнения — табличный и Графический. Первый прием состоит в вычислении таблицы значений функции F(x) В заданных точках Xi и использовании следующих теорем математического анализа:

1. Если функция Y=f(x) непрерывна на отрезке [а, b] и f(a)f(b) 0, то последовательные приближения сходятся к корню монотонно.

Метод релаксации — один из вариантов метода простой итерации:

Метод релаксации решения нелинейных уравнений.

Если функция F(x) отрицательная, то рассматривают уравнение Y= — f(x). Метод имеет линейную скорость сходимости.

Метод Ньютона (касательных). Для начала вычислений требуется задание одного начального приближения X0, последующие приближения вычисляются по формуле

Метод релаксации решения нелинейных уравнений.

Метод имеет квадратичную скорость сходимости для простого корня, но очень чувствителен к выбору начального приближения. При произвольном начальном приближении итерации сходятся, если всюду Метод релаксации решения нелинейных уравнений, в противном случае сходимость будет только при X0, достаточно близком к корню. Существует несколько достаточных условий сходимости. Если производные F'(X) и f»(X) Сохраняют знак в окрестности корня, рекомендуется выбирать X0 так, чтобы Метод релаксации решения нелинейных уравнений. Если, кроме этого, для отрезка [А, b], содержащего корень, выполняются условия

Метод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравнений

То метод сходится для любых X0 Î[А, b]. При вычислении кратного корня производная F'(X) близка к нулю в окрестности корня, и сходимость метода замедляется.

Модифицированный метод Ньютона применяют, если хотят избежать многократного вычисления производной:

Метод релаксации решения нелинейных уравнений.

Метод имеет линейную скорость сходимости.

Метод секущих Получают из метода Ньютона заменой производной F'(X), разделенной разностью, вычисленной по известным значениям Xn И Xn-1:

Метод релаксации решения нелинейных уравнений.

Метод является двухшаговым, его порядок сходимости a»1.618, что хуже, чем в методе Ньютона. Но в методе Ньютона на каждой итерации надо вычислять и функцию, и производную, а в методе секущих — только функцию. Поэтому при одинаковом объеме вычислений в методе секущих можно сделать больше итераций и получить более высокую точность.

Метод Эйткена ускорения сходимости. Главным является требование Линейной сходимости основного итерационного метода. В случае методов, имеющих более высокую скорость сходимости, ускорение по Эйткену неэффективно. Метод состоит в том, что после вычисления Xn, Xn+1 И Xn+2 производится пересчет по формуле

Метод релаксации решения нелинейных уравнений

И значение yN+1 принимается за новое приближение. Оно дает лучшее приближение к корню, чем очередная итерация Xn+2. На практике не обязательно проводить пересчет на каждой итерации. Обычно он осуществляется циклически, т. е. через определенное число основных итераций.

С помощью метода Эйткена на основе известных итерационных методов получены новые, обладающие более высокой сходимостью.

Метод Вегстейна — улучшенный по Эйткену метод простой итерации; — записан в виде, позволяющем проверять целесообразность пересчета:

Метод релаксации решения нелинейных уравнений.

Если Rn почти постоянны, то использование в качестве очередного приближения YN+1 сильно ускорит сходимость. Итерации прекращают, если выполняется

Метод релаксации решения нелинейных уравнений.

Метод Стеффенсена имеет квадратичную сходимость, — более быструю, чем исходный метод релаксации:

Метод релаксации решения нелинейных уравнений.

8.2 Описание работы

1. Напишите программу, решающую нелинейное уравнение тремя методами (по выбору преподавателя). Предусмотрите в программе подсчет числа итераций, необходимого для достижения заданной точности e вычисления корня каждым методом.

2. Вычислите корни нечетной кратности уравнения, используя один из безусловно сходящихся методов с точностью E ( E = 10-4, 10-5, 10-6).

3. Примените метод простой итерации для нахождения одного из корней с точностью E ( E = 10-4, 10-5, 10-6) при различных начальных приближениях.

4. Вычислите все корни уравнения, используя метод Ньютона или одну из модификаций с точностью E ( E = 10-4, 10-5, 10-6) при различных начальных приближениях.

5. Примените метод Эйткена ускорения сходимости к используемым методам и исследуйте его влияние на число итераций.

8.3 Содержание отчета

1. Название и цель работы.

2. Исходная постановка задачи.

3. Результаты вычислений корней уравнения тремя методами с заданной точностью при различных начальных приближениях.

4. Результаты исследования зависимости числа итераций от требуемой точности и используемого метода.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод релаксации

В случае, изображенном на рис. 2.7, последовательные приближения смещаются все время монотонно влево и вниз. Такая картина – монотонное смещение отдельных компонент все время в одном и том же направлении – характерна для ряда классов матриц. При этом довольно часто

Метод релаксации решения нелинейных уравнений

Рис. 2.7. Иллюстрация к методу релаксации

монотонное смещение наблюдается именно у компонент решения, скорость сходимости которых наиболее плохая. В этих случаях для ускорения сходимости прибегают к методу релаксации, который заключается в следующем. После уточнения каждой координаты по методу Зейделя производится смещение в том же направлении на р-ю часть этого смещения. Таким образом, приближения отыскиваются из соотношения

Метод релаксации решения нелинейных уравнений,

где D– диагональная матрица с элементами аijпо диагонали. Как показала практика вычислений, при А > 0 целесообразно брать показатель релаксации р в пределах -1 0 еще раз обратимся к геометрической картине (см. рис. 2.7). После уточнения компоненты х1 по методу релаксации при -1 Будет полезно почитать по теме:

Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Курсовая работа: Метод релаксации переменных решения СЛАУ

Численное решение СЛАУ – одна из наиболее часто встречающихся задач в научно-технических исследованиях. Такая задача возникает в математической физике (численное решение дифференциальных и интегральных уравнений), экономике, статистике. При этом прикладные задачи часто требуют решения больших и сверхбольших СЛАУ с числом неизвестных более 1000. К таким СЛАУ, например, приводит численное решение двумерных и особенно трехмерных задач математической физики, в которых условия физической и геометрической аппроксимации двумерной и трехмерной области диктуют использование достаточно мелкой расчетной сетки с большим числом расчетных узлов по линейному размеру.

Существующие библиотеки программ на языках высокого уровня, разработаны на основе, так называемых, прямых методов решения СЛАУ, типа метода Гаусса и его модификаций. Число арифметических операций умножения для численного решения СЛАУ размерностью Метод релаксации решения нелинейных уравненийс помощью прямого метода — Метод релаксации решения нелинейных уравнений. Кубическая зависимость числа арифметических операций от размера матрицы СЛАУ приводит при Метод релаксации решения нелинейных уравненийк нереально большому времени решения даже на самых современных ЭВМ. Кроме того, время решения несоразмерно возрастает при использовании прямых методов в случае Метод релаксации решения нелинейных уравненийпо причине недостаточности объема оперативной памяти для хранения данных задачи.

Итерационные методы решения СЛАУ намного экономнее, как по машинному времени решения, так и по использованию оперативной памяти. Так, если итерационный метод является быстро сходящимся с числом итераций Метод релаксации решения нелинейных уравнений, то время решения, пропорциональное уже квадрату размера матрицы

Метод релаксации решения нелинейных уравнений, оказывается существенно меньше, примерно в Метод релаксации решения нелинейных уравненийраз для вещественной и Метод релаксации решения нелинейных уравненийраз для комплексной СЛАУ. Кроме того, требуется хранить в оперативной памяти, как правило, только одну матрицу, например, матрицу перехода явного итерационного метода. При использовании быстро сходящихся итерационных методов вполне решаемыми в реальном времени на современных ПЭВМ оказываются СЛАУ с комплексной матрицей размерностью Метод релаксации решения нелинейных уравнений.

В настоящее время отсутствуют библиотеки подпрограмм широкого назначения для численного решения больших и сверхбольших СЛАУ. Таким образом, разработка эффективных итерационных алгоритмов для широкого класса матриц СЛАУ большой размерности и библиотек подпрограмм на их основе является актуальной задачей.

Наиболее алгоритмически простыми среди итерационных методов являются стационарные итерационные методы, такие как оптимальный метод простой итерации и метод релаксации. В то же время показано, что можно добиться их эффективной сходимости для достаточно широкого класса вещественных и комплексных матриц СЛАУ. Для нестационарных итерационных методов, таких как метод с чебышевским набором параметров, минимальных невязок, сопряженных градиентов, сходимость доказана в узком классе матриц, например, таких как вещественные симметричные положительно определенные матрицы. И в этом узком классе матриц сходимость оптимальных стационарных методов, опирающихся на известные спектральные матричные свойства, оказывается в некоторых случаях даже лучшей. При этом число арифметических операций стационарного алгоритма минимально. Еще одним преимуществом оптимального метода простой итерации является возможность естественного распараллеливания алгоритма при постановке его на современные параллельные ЭВМ, так как алгоритм по существу сводится к одному умножению матрицы на вектор. Все эти аргументы указывают на выбор стационарных итерационных методов в качестве алгоритмической основы для библиотеки подпрограмм по решению СЛАУ с большими матрицами. В курсовой работе рассмотрен итерационный метод релаксации решения СЛАУ.

1. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим систему линейных алгебраических уравнений

Название: Метод релаксации переменных решения СЛАУ
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 03:06:02 27 апреля 2011 Похожие работы
Просмотров: 8472 Комментариев: 22 Оценило: 5 человек Средний балл: 4.4 Оценка: неизвестно Скачать
Метод релаксации решения нелинейных уравнений,(1.1)

А — матрица размерности Метод релаксации решения нелинейных уравнений,

Численные методы решения данной системы принято разделять на два класса: прямые методы и итерационные.

Прямыми методами называются методы, позволяющие получить решение системы уравнений (1.1) за конечное число арифметических операций.

К прямым методам относятся метод Крамера, метод Гаусса, LU — метод, метод прогонки и ряд других методов. Основным недостатком прямых методов является то, что для нахождения решения необходимо выполнить большое число операций.

Суть итерационных методов состоит в том, что решение системы (1.1) находится как предел последовательных приближений x ( n ) при n ®¥, где n — номер итерации. Применение итерационных методов требует задания начального значения неизвестных х (0) и точности вычислений e >0. Вычисления проводятся до тех пор, пока не будет выполнена оценка

Метод релаксации решения нелинейных уравнений.(1.2)

Основное достоинство итерационных методов состоит в том, что точность искомого решения задается.

Число итераций n =n (e ), которое необходимо выполнить для получения заданной точности e , является основной оценкой качества метода. По этому числу проводится сравнение различных методов.

Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Доказанные в настоящее время теоремы о сходимости итерационных методов имеют место для систем, на матрицы которых наложены ограничения.

Примером обычных итерационных методов могут служить метод Якоби (метод простых итераций), метод Зейделя, метод верхних релаксаций.

К особому классу итерационных методов следует отнести вариационные итерационные методы: метод минимальных невязок, метод скорейшего спуска и т.д.

Итерационные методы также делятся на одношаговые, когда для определения решения на j +1 итерации используются значения решения, найденные на j итерации, и многошаговые, когда для определения решения на j +1 итерации используется несколько предыдущих итераций.

Заметим, что существуют системы, для которых итерационный процесс сходится, а вектор невязки, получающийся при подстановке найденного решения в исходную систему

Метод релаксации решения нелинейных уравнений,(1.4)

получается большим по величине, т.е. найденное решение не удовлетворяет исходной системе. В этом случае в качестве критерия достижения точности решения может быть взята величина невязки, которая оценивается по одной из норм Метод релаксации решения нелинейных уравнений.

Продемонстрируем применение одношагового итерационного метода Якоби на решении системы трех уравнений. Пусть система (1.1) имеет вид

Метод релаксации решения нелинейных уравнений

начальное приближение Метод релаксации решения нелинейных уравнений(верхний индекс указывает номер итерации), требуемая точность решения —e . Первая итерация находится из выражения

Непосредственная проверка условия (1.2) связана с необходимостью знания точного решения. Поэтому на практике используется несколько упрощенное правило, т.е. проверяют, достигнута заданная точность или нет, сравнивая два итерационных значения x

Метод релаксации решения нелинейных уравнений

Если точность не достигнута, то выполняется следующая итерация. В системе (1.5) Метод релаксации решения нелинейных уравненийзаменяем на Метод релаксации решения нелинейных уравненийи находим значения Метод релаксации решения нелинейных уравнений. После этого вновь проверяем, достигнута точность решения или нет.

Заметим, что в некоторых особых случаях может иметь место сходимость итерационного процесса к некоторым значениям, которые не являются решением задачи. В этом случае, по-видимому, предпочтительнее в качестве критерия сходимости использовать невязку, получаемую при подстановке найденного решения в исходную систему.

Запишем выражение i +1- итерации черезi :

Метод релаксации решения нелинейных уравнений

Если точность решения достигнута, то счет прекращается.

Для систем m -го порядка имеем

Метод релаксации решения нелинейных уравнений

Запишем метод простых итераций в матричной форме. Представим матрицу А в виде суммы трех матриц

Метод релаксации решения нелинейных уравнений
А=А 1 +D +A 2 ,(1.10)

А 1 = Метод релаксации решения нелинейных уравнений— нижняя треугольная матрица,

А 2 = Метод релаксации решения нелинейных уравнений— верхняя треугольная матрица.

Представим систему (1.1) в матричной форме

Метод релаксации решения нелинейных уравнений(1.11)

Метод Якоби в матричной записи выглядит следующим образом

Метод релаксации решения нелинейных уравнений,(1.12)

Метод релаксации решения нелинейных уравнений,

Метод релаксации решения нелинейных уравнений.

Существуют итерационные методы, обладающие лучшей скоростью сходимости, чем методы Якоби. В этих методах при вычислении i +1 итерации Метод релаксации решения нелинейных уравненийкомпоненты вектора решения используются, найденные на i + 1 итерации компоненты решения с номерами Метод релаксации решения нелинейных уравнений, l =1,2. j -1. Наиболее распространенным методом подобного типа является метод Зейделя. Продемонстрируем его применение на системе (1.3). Вновь, задавая начальное приближение, для первой итерации запишем

После проверки условия сходимости совершаем вторую итерацию и т.д. Для i + 1 итерации запишем

Метод релаксации решения нелинейных уравнений

Общая формула имеет вид

Метод релаксации решения нелинейных уравнений
Метод релаксации решения нелинейных уравнений.(1.16)

Запишем метод Зейделя в матричной форме

Метод релаксации решения нелинейных уравнений,(1.17)

или в форме близкой к каноническому виду

Метод релаксации решения нелинейных уравнений,(1.18)
Метод релаксации решения нелинейных уравнений.(1.19)

Äëÿ îäíîøàãîâûõ èòåðàöèîííûõ ìåòîäîâ, ñóùåñòâóåò êàíîíè÷åñêàÿ ôîðìà çàïèñè

Метод релаксации решения нелинейных уравнений.(1.20)

Здесь Метод релаксации решения нелинейных уравнений— матрица, задающая тот или иной итерационный метод, Метод релаксации решения нелинейных уравнений— итерационный параметр. В случае метода Якоби Метод релаксации решения нелинейных уравнений— это матрица D , а Метод релаксации решения нелинейных уравнений=1, в случае метода Зейделя Метод релаксации решения нелинейных уравнений=D 1 , а итерационный параметр также равен единице Метод релаксации решения нелинейных уравнений=1.

Формируя матрицу B различным образом и задавая различные значения итерационного параметра, можно получать одношаговые итерационные методы самого разного вида. В зависимости от выбора этих параметров мы будем получать методы, которые будут обладать различной скоростью сходимости, т.е. заданная точность будет достигаться за разное число итераций.

Одним из наиболее распространенных одношаговых итерационных методов является метод верхних релаксаций * , который имеет следующий вид

Метод релаксации решения нелинейных уравнений,(1.21)

где w >0 — заданный числовой параметр. Этот параметр выбирается таким образом, чтобы на каждом шаге итерационного процесса уменьшалась величина, характеризующая близость полученного решения к искомому решению системы.

Для получения расчетных формул (1.21) перепишем в виде

Метод релаксации решения нелинейных уравнений,(1.22)

или в покомпонентной записи получим

Метод релаксации решения нелинейных уравнений.(1.23)

Приведем несколько строк покомпонентной записи

Метод релаксации решения нелинейных уравнений,(1.24)
Метод релаксации решения нелинейных уравнений,(1.25)
Метод релаксации решения нелинейных уравнений(1.26)

Практика применения итерационных методов показала, что эти методы приводят к правильному решению для систем с матрицей А имеющей специальный вид. Приведем ряд теорем о сходимости итерационных методов. Доказательства этих теорем приводятся в книге [1].

Рассмотрим итерационные методы с постоянным итерационным параметром, записанные в виде

Метод релаксации решения нелинейных уравнений.(1.27)

Пусть А — симметричная положительно определенная матрица, t >0 и пусть выполнено неравенство В- 0,5t А >0. Тогда итерационный метод (1.27) сходится.

Пусть А — симметричная положительно определенная матрица с диагональным преобладанием, т.е.

Метод релаксации решения нелинейных уравнений(1.28)

Тогда метод Якоби сходится.

Пусть А — симметричная положительно определенная матрица. Тогда метод верхних релаксаций сходится при условии 0 g 2 . При Метод релаксации решения нелинейных уравненийитерационный метод (1.27) сходится и для погрешности справедливы оценки

Метод релаксации решения нелинейных уравнений, i =0,1.(1.29)
Метод релаксации решения нелинейных уравнений(1.30)
Метод релаксации решения нелинейных уравнений,(1.31)
Метод релаксации решения нелинейных уравнений,(1.32)
Метод релаксации решения нелинейных уравнений.(1.33)

Если А Т =А >0, то для метода простой итерации

Метод релаксации решения нелинейных уравнений(1.34)
Метод релаксации решения нелинейных уравнений(1.35)
Метод релаксации решения нелинейных уравнений,(1.36)
Метод релаксации решения нелинейных уравнений(1.37)
Метод релаксации решения нелинейных уравнений(1.38)

Для симметричной матрицы А и

Метод релаксации решения нелинейных уравнений(1.39)
Метод релаксации решения нелинейных уравнений,(1.40)

где Метод релаксации решения нелинейных уравнений,. В приложениях часто встречаются задачи с плохо обусловленной матрицей А , когда отношение Метод релаксации решения нелинейных уравненийвелико. В этом случае число r 0 близко к единице, и метод простой итерации сходится медленно.

Оценим число итераций n 0 (e ), которое требуется для достижения заданной точности e в случае малых x , т.е. для получения оценки

Метод релаксации решения нелинейных уравнений.(1.41)

Из условия Метод релаксации решения нелинейных уравненийполучаем, что

Метод релаксации решения нелинейных уравнений,(1.42)

и при малых x имеем

Метод релаксации решения нелинейных уравнений.(1.43)

Заметим, что в качестве критерия сходимости итерационного метода может использоваться невязка, которая получается при подстановке найденного решения в систему (1.1).

1.1 Метод верхних релаксаций

линейный уравнение итерационный релаксация

Среди явных одношаговых итерационных методов наибольшее распространение получил метод верхних релаксаций (1.21). Это связано с тем, что метод верхних релаксаций содержит свободный параметрw , изменяя который можно получать различную скорость сходимости итерационного процесса.

Наиболее эффективно этот метод применяется при решении множества близких алгебраических систем линейных уравнений. На первом этапе проводится решение одной из систем с различными значениями итерационного параметраw и из анализа скорости сходимости итерационного процесса выбирается оптимальное значение этого параметра. Затем все остальные системы решаются с выбранным значением w .

Еще одно достоинство итерационного метода верхних релаксаций состоит в том, что при его реализации на ЭВМ алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.

Основная вычислительная формула имеет вид

Метод релаксации решения нелинейных уравнений(1.44)

В выражение (1.44) Метод релаксации решения нелинейных уравненийи Метод релаксации решения нелинейных уравненийвходят одинаковым образом, следовательно, при вычислениях они могут записываться в один и тот же массив. При реализации метода верхних релаксаций используется следующая форма записи алгоритма вычислений

Метод релаксации решения нелинейных уравнений.(1.45)

Действительно, при последовательном нахождении элемента Метод релаксации решения нелинейных уравнений(i +1 итерации) на каждом шаге будут использоваться найденные ранее значения, которые при k j i итерации.

Современная вычислительная техника позволяет проводить исследование устойчивости и сходимости итерационного метода в зависимости от параметров задачи. Например, можно проводить исследование влияния повышения точности решения задачи на число необходимых итераций, исследование влияния начального приближения, изменения коэффициентов матрицы А и правых частей системы.

1.2 Âû÷èñëèòåëüíûå ïîãðåøíîñòè ìåòîäà âåðõíèõ ðåëàêñàöèé

Один из основных вопросов применения итерационных методов связан с корректностью выбора точности метода e.

Àíàëèçèðóÿ âû÷èñëèòåëüíûå ïîãðåøíîñòè âûðàæåíèÿ (1.45), ïîëó÷èì îöåíêó íàèìåíüøåãî çíà÷åíèÿ òî÷íîñòè ìåòîäà âåðõíèõ ðåëàêñàöèé.

Очевидно, что искомая погрешность вычислений будет определяться погрешностью задания коэффициентов исходной системы и погрешностью округления.

Çàïèøåì ðàçíîñòü äâóõ èòåðàöèîííûõ ïðèáëèæåíèé ðåøåíèÿ è îöåíèì å¸ ìèíèìàëüíîå çíà÷åíèå

Метод релаксации решения нелинейных уравнений(1.46)

Пусть коэффициенты Метод релаксации решения нелинейных уравненийи fi заданы с некоторой относительной погрешностью Метод релаксации решения нелинейных уравнений. Предположим, что итерационный метод сходится, и невязка

Метод релаксации решения нелинейных уравнений(1.47)

бывает с ростом номера итерации k , т.е. Метод релаксации решения нелинейных уравнений. Оценка абсолютной погрешности правой части выражения (10) может быть представлена в следующем виде

Метод релаксации решения нелинейных уравнений,(1.48)

здесь Метод релаксации решения нелинейных уравнений.- модуль минимального значения диагонального элемента Метод релаксации решения нелинейных уравнений.Отсюда следует, что задаваемая погрешность метода Метод релаксации решения нелинейных уравнений.

1.3 Ìåòîä áëî÷íîé ðåëàêñàöèè

Èñõîäíàÿ ìàòðèöà Метод релаксации решения нелинейных уравненийðàçáèâàåòñÿ íà áëîêè (â ðàìêàõ ëàáîðàòîðíîé ðàáîòû áóäåì ðàññìàòðèâàòü ñëó÷àé, êîãäà Метод релаксации решения нелинейных уравненийðàçáèâàåòñÿ íà êâàäðàòíûå áëîêè ðàâíîé ðàçìåðíîñòè). Âåêòîð ïðàâîé ÷àñòè è âåêòîð íåèçâåñòíûõ ðàçáèâàþòñÿ íà áëîê-âåêòîðû ñîîòâåòñòâóþùåé ðàçìåðíîñòè. Íàïðèìåð, äëÿ ðàçìåðà áëîêà ðàâíîãî äâóì, ïîëó÷àåì:

Метод релаксации решения нелинейных уравнений
Метод релаксации решения нелинейных уравнений(1.50)
Метод релаксации решения нелинейных уравнений(1.51)
Метод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравнений(1.52)

Çàïèøåì ôîðìóëó äëÿ áëîêîâ ìàòðèöû Метод релаксации решения нелинейных уравненийè áëîê-âåêòîðîâ Метод релаксации решения нелинейных уравненийè Метод релаксации решения нелинейных уравнений:

Метод релаксации решения нелинейных уравнений(1.53)
Метод релаксации решения нелинейных уравнений(1.54)
Метод релаксации решения нелинейных уравнений(1.55)

Òîãäà, ïîäñòàâëÿÿ (1.54) è (1.55) â (1.53) è óìíîæàÿ ñëåâà íà Метод релаксации решения нелинейных уравнений, äëÿ êàæäîãî áëîê-âåêòîðà Метод релаксации решения нелинейных уравненийïîëó÷àåì ÑËÀÓ:

Метод релаксации решения нелинейных уравнений(1.56)

Ðåøåíèå ïîëó÷åííûõ ñèñòåì (1.56) ðåêîìåíäóåòñÿ âûïîëíÿòü ñ èñïîëüçîâàíèåì ôàêòîðèçàöèè ìàòðèöû Метод релаксации решения нелинейных уравнений, ïðè÷¸ì ôàêòîðèçàöèþ ñëåäóåò âûïîëíÿòü 1 ðàç ïåðåä ïåðâîé èòåðàöèåé.

2. ÐÀÇÁÎÐ ÌÅÒÎÄÀ ÐÅËÀÊÑÀÖÈÉ Â ÑÈÑÒÅÌÀÕ ËÈÍÅÉÍÛÕ ÓÐÀÂÍÅÍÈÉ ÍÀ ÏÐÈÌÅÐÅ

ПРИМЕР: решить методом релаксаций данную систему

Вычисления производить с точностью до двух знаков после запятой.

РЕШЕНИЕ: Приводим систему(4) к виду, удобному для решения методом релаксации

Метод релаксации решения нелинейных уравнений

Задаем начальные приближения корней нулевыми значениями

Метод релаксации решения нелинейных уравнений
Метод релаксации решения нелинейных уравнений(2.3)

Находим значения невязок

Метод релаксации решения нелинейных уравнений

Метод релаксации решения нелинейных уравнений

Метод релаксации решения нелинейных уравнений

Метод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравненийМетод релаксации решения нелинейных уравнений
00,6000,7000,80
0,160,16-0,80
0,760,860
0,170,86-0,860,09
0,9300,09
0,93-0,930,090,09
00,090,180,18
0,040,04-0,18
0,040,130,130
0,03-0,130,01
0,070,0700,01
-0,070,010,01
00,010,020,02
00-0,02
0
00,010,010
0-0,010
000
Метод релаксации решения нелинейных уравнений1,001,001,00

Метод релаксации решения нелинейных уравнений

И так далее. Подставляем результаты вычисленные в таблице. Подсчитав все приращения Метод релаксации решения нелинейных уравнений, содержащее значение корней Метод релаксации решения нелинейных уравнений

Для проверки подставляем найденные значения корней в исходное уравнение; в целом система решена точно.

Метод релаксации решения нелинейных уравнений

Рисунок 1 – Решение системы с помощью языка Borland C++

Листинг программы решающий систему методом релаксаций переменных приведен в приложении.

Можно утверждать, что почти любая задача вычислительной математики сводится в конечном итоге к решению полученной некоторым образом системы линейных или тензорных алгебраических уравнений (СЛАУ).

Но такие системы уравнений могут быть, во-первых, очень большого размера, например, NxN=10000х10000, и даже более; во-вторых, система уравнений может оказаться недоопределенной; в-третьих, она может оказаться с линейно зависимыми уравнениями; в-четвертых, она может оказаться переопределённой и несовместной. Кроме того, в-пятых, вычислительная техника может иметь далеко не рекордное быстродействие и объём оперативной памяти, и заведомо конечную разрядность двоичного представления чисел и связанные с этим ненулевые вычислительные погрешности. Поэтому итерационные методы получили большое применение в решении СЛАУ. Современная вычислительная техника позволяет проводить исследование устойчивости и сходимости итерационного метода в зависимости от параметров задачи.

Наиболее эффективно метод релаксаций применяется при решении множества близких алгебраических систем линейных уравнений. На первом этапе проводится решение одной из систем с различными значениями итерационного параметраw и из анализа скорости сходимости итерационного процесса выбирается оптимальное значение этого параметра. Затем все остальные системы решаются с выбранным значением w .

Еще одно достоинство итерационного метода верхних релаксаций состоит в том, что при его реализации на ЭВМ алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.

Я научился решать систем линейных уравнений методом релаксации(ослабления) переменных, и закрепил приобретённые навыки разработкой программы на языке Borland C++ 4.5.

1. Воеводин В.В. «Вычислительные основы линейной алгебры». Москва «Наука», 1977.

2. Фаддеев Д.К., Фаддеева В.Н. «Вычислительные методы линейной алгебры». Москва «Физматгиз», 1963.

3. Самарский А.А., Гулин А.В.» Численные методы». Москва «Наука», 1989.

4. Самарский А.А., Николаев Е.С. «Методы решения сеточных уравнений». Москва «Наука», 1978.

5. Самарский А.А. «Введение в численные методы». Москва «Наука», 1987.

6. Стренг Г. «Линейная алгебра и ее применение». Москва «Мир», 1980.

7. Карманов В.Г. «Математическое программирование». Москва «Наука», 1989.

8. Алексеев Е.Р. «Программирование на С++». Москва «НТ Пресс», 2007.

9. http://www.exponenta.ru/ — сайт посвящен решению математических задач в прикладных программных пакетах.

10. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. — М.: Наука, 1987.- 600 с.

📽️ Видео

Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Вычислительные методы алгебры - Метод релаксации, градиентного спуска, минимальных невязокСкачать

Вычислительные методы алгебры - Метод релаксации, градиентного спуска, минимальных невязок

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

Метод итерацийСкачать

Метод итераций

Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

Численные методы. Лекция 2. Матричные задачи. Решение нелинейных уравненийСкачать

Численные методы. Лекция 2. Матричные задачи. Решение нелинейных уравнений
Поделиться или сохранить к себе: