Метод разделения переменных при решении дифференциальных уравнений

Дифференциальные уравнения с разделяющимися переменными

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Содержание
  1. Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x
  2. Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x
  3. Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0
  4. Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x
  5. Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R
  6. Метод Фурье
  7. Метод Фурье
  8. Первое из граничных условий
  9. Дифференциальные уравнения с разделяющимися переменными
  10. Дифференциальные уравнения, в которых переменные уже разделены
  11. Дифференциальные уравнения, в которых требуется разделить переменные
  12. Решить примеры самостоятельно, а затем посмотреть правильные решения
  13. Продолжаем решать примеры вместе
  14. 📽️ Видео

Видео:1203.Метод разделения переменныхСкачать

1203.Метод разделения переменных

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = — cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = — cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = — cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = — 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 — C 1 )

Общим решением данного ДУ является функция y = — 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = — cos x + C 2 , или y = — 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 — C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Видео:Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать

Уравнение колебаний струны. Метод разделения переменных. Метод Фурье

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z — a x ) ⇒ y ‘ = 1 b ( z ‘ — a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ — a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) — 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z — 2 x ⇒ y ‘ = z ‘ — 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) — 2 ⇔ z ‘ — 2 = 1 ln z — 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z — ∫ z d z z = = z · ln z — z + C 1 = z · ( ln z — 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z — 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 — C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) — 1 ) = 0 + C e · ( ln e — 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Видео:Р.Т. Файзулин Метод разделения переменныхСкачать

Р.Т. Файзулин Метод разделения переменных

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z — x · z ‘ z 2 = z — x · z ‘ z 2

В этом случае уравнения примут вид z — x · z ‘ z 2 = f ( z ) или z — x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x — y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x — y x + y x ⇔ z + x z ‘ = 1 e z — z + z ⇔ x · d z d x = 1 e z — z ⇔ ( e z — z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z — z ) d z = ∫ d x x e z — z 2 2 + C 1 = ln x + C 2 e z — z 2 2 = ln x + C , C = C 2 — C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x — 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n — 1 x + a 2 y n — 2 x 2 + . . . + a n x n b 0 y n + b 1 y n — 1 x + b 2 y n — 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 — x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 — x 2 2 x y ⇒ y ‘ = y 2 x 2 — 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 — 1 2 y x ⇔ z ‘ x + z = z 2 — 1 2 z ⇔ z ‘ x = z 2 — 1 2 z — z ⇔ z ‘ x = z 2 — 1 — 2 z 2 2 z ⇔ d z d x x = — z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = — d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = — ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 — ∫ d x x = — ln x + C 2 ⇒ ln z 2 + 1 + C 1 = — ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем — ln C = C 2 — C 1 и применим свойства логарифма:

ln z 2 + 1 = — ln x + C 2 — C 1 ⇔ ln z 2 + 1 = — ln x — ln C ⇔ ln z 2 + 1 = — ln C x ⇔ ln z 2 + 1 = ln C x — 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x — 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x — 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 — x 2 2 x y ⇔ y ‘ = 1 — x 2 y 2 2 x y

Тогда y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z — z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z — z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z — 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z — 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 — C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x — 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Видео:Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) — решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x — x 0 v = y — y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y — 3 x — 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y — 3 = 0 x — 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x — 1 v = y — 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y — 3 x — 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 — C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u — 1 ⇔ v u = C · u — 1 ⇔ v = u · ( C · u — 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x — 1 v = y — 1 :
v = u · ( C · u — 1 ) ⇔ y — 1 = ( x — 1 ) · ( C · ( x — 1 ) — 1 ) ⇔ y = C x 2 — ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Видео:Метод разделения переменных. Математика.Скачать

Метод разделения переменных. Математика.

Метод Фурье

Содержание:

Метод разделения переменных при решении дифференциальных уравнений

Метод разделения переменных при решении дифференциальных уравнений

Метод разделения переменных при решении дифференциальных уравнений

Метод разделения переменных при решении дифференциальных уравнений

Метод разделения переменных при решении дифференциальных уравнений

Метод разделения переменных при решении дифференциальных уравнений

По этой ссылке вы найдёте полный курс лекций по математике:

Метод Фурье, или метод разделения переменных, является одним из наиболее распространенных методов решения уравнений с частными производными. Рассмотрим этот метод, обратившись к простейшей задаче о свободных колебаниях однородной струны длины i, закрепленной на концах. §4. Свободные колебания однородной струны, закрепленной на концах Задача о свободных колебаниях однородной струны с закрепленными концами сводится к решению уравнения при граничных условиях и начальных условиях.

Метод Фурье Задачу (1 )-(3) называют смешанной: она содержит и начальные и граничные условия. Решение задачи начнем с поиска частных решений уравнения (1) вида При этом будем предполагать, что каждое из них удовлетворяет граничным условиям (2), но не равно нулю тождественно. Подставляя функцию и<х, t) в форме (4) в уравнение (1), получаем ИЛИ Последнее равенство (его левая часть зависит только от а правая — только от х) возможнолишь втом случае, если обе его части не зависят ни от ty ни от х,т.е. равны одной и той же постоянной.

Обозначим эту постоянную (разделения) через (-А), Из равенства (5) получаем два обыкновенных дифференциальных уравнения Граничные условия (2) дают откуда (T(t) £ 0) следует, что функция Х(х) должна удовлетворять граничным условиям Чтобы получить нетривиальные решения tt(x, t) вида (4), удовлетворяющие граничным условиям (2), необходимо найти нетривиальные решения уравнения удовлетворяющие граничным условиям.

Таким образом, мы приходим к следующей задаче: найти значения параметра А, при которых существуют нетривиальные решения задачи (7)-(8), а также сами эти решения. Такие значения параметра А называются собственными значениями, а соответствующие им нетривиальные решения — собственными функциями задачи (7)-(8). Сформулированную таким образом задачу называют задачей Штурма—Лиувилля. Найдем собственные значения и собственные функции задачи (7)-(8).

Рассмотрим отдельно три случая, когда 1.

При общее решение уравнения (7) имеет вид Потребовав выполнения граничных условий (8), получим (6) (7) Так как определитель системы (9) отличен от нуля, то . Следовательно, Х(х) = 0, т. е. при нетривиальных решений задачи не существует. (9) 2. При А = 0 общее решение уравнения (7) имеет вид Граничные условия (8) дают откуда С, = С2 = 0, и следовательно, при А = 0 нетривиальных решений задачи (7)-(8) также не существует. 3.

При Л > 0 общее решение уравнения (7) имеет вид Потребовав выполнение граничных условий (8), получим Система (10) имеет нетривиальные решениятогда и толькотогда, когда определитель системы равен нулю, Метод Фурье будут собственными функциями задачи. Собственные функции определены с точностью до постоянного множителя, который мы выбрали равным единице. При А = А* общее решение у равнения (6) имеетвид ктга кчга где Аки Bk — произвольные постоянные. Таким образом, функции удовлетворяют уравнению (1) и граничным условиям (2) при любых Ак и Вку В силу линейности и однородности уравнения (1) всякая коневая сумма решений будет также решением уравнения (1).

То же справедливо и для ряда если он сходится равномерно и его можно дважды почленно дифференцировать по х и по t. Поскольку каждое слагаемое в ряде (11) удовлетворяет граничным условиям (2), то этим условиям будет удовлетворять и сумма u(s, t) этого ряда. Остается определить в формуле (11) постоянные .4* и Вк так, чтобы выполнялись и начальные условия (3). Продифференцируем формально ряд (11) по t.

Имеем Полагая в соотношениях (l 1) и (12) t = 0, в силу начальных условий (3) получим Формулы (13) представляют собой разложения заданных функций вряд Фурье по синусам в интервале Коэффициенты разложений (13) вычисляются по известным формулам / I Теорема 2. Если и удоъчетворяет условиям и удовлетворяет условию то сумма tx(x, £) ряда (11), где -А* и В* опредыяются формулами (14), имеет в области непрерывные частные производные до второго порядка включительно по каждому из аргументов, удовлетворяет уравнению (1), граничным условиям (2) и начальным условиям (3), т. е. является решением задачи (1 )-(3).

Пример. Найти закон свободных колебаний однородной струны длины I, закрепленной на концах, если в начальный момент t = 0 струна имеет форму параболы — const), а начальная скорость отсутствует. 4 Задача сводится к решению уравнения при граничных условиях и начальных условиях.

Возможно вам будут полезны данные страницы:

Метод Фурье

Применяя метод Фурье, ищем нетривиальные решения уравнения (1), удовлетворяющие граничным условиям (2), в виде Подставляя «(*,*) в форме (4) в уравнение (1) и разделяя переменные, получим откуда причем в силу (2) Как было установлю но выше, собственные значения задачи (7)-(8) а соответствующие собственные функции Для А = Ащ общее решение уравнения (6) имеет вид пяа ижа Будем иска тъ решение исходной задачи в виде ряда Для определен ия коэффициентов -4Я и Z?„ воспользуемся начальными условия ми (3).

Имеем Из формулы (II) срезу

получаем, что 2?„ = 0 для любог о п, а из (10) Метод Фурье откуда, интегрируя по частям дважды . находи м . Подставляя наеденные значения А, и в ряд (9), получим решение поставленной задачи , Замечание. Если начальные фукхдда не удовлетворяют условиям теоремы 2, то дважды непрерывно дифференцируемого решения смешанной задачи (1)-(3) может и не существовать.

Однако если , то ряд (II) сходетс* равномерно при и любом t и определяет непрерывную функюао u(xtt). В этом случае можно говорить лишь об обобщенная решении задачи. Каждая из функций определяет так называемые собств енные колебания струны, закрепленной на концах. При собственных колебаниях, отвечающих к = 1, струна издает основной, самый низкий тон.

При колебаниях, соответствующих ббльшим Л.она издает более высокие тоны, обертоны. Записав *) в виде заключаем, что собственные колебания струны — стоячие волны, при которых точки струны совершают гармонические колебания с амплитудой Нк sin частотой Метод Фурье Мы рассмотрели случай свободных колебаний однородной струны, закрепленной на концах. Рассмотрим теперьслуч ай других граничных условий.

Пусть, например, левый конец струны закреплен, u(0, t) = 0, а правый конец х — 1 упругосвязан со своим положением равновесия, что соответствует условию . Нетривиальное решение u(x, t) уравнения (1), удовлетворяющее поставленным граничным условиям, будем опять искать в виде В результате подстановки в уравнение (1) приходим к следующей задаче о собственных значениям: найти такие значения параметра Л, для которых дифференциальное уравнение при граничных условиях имеет нетривиальные решения Х(х). Общее решение уравнения (15) имеет вид (А > 0)

Первое из граничных условий

Первое из граничных условий (16) дает С = 0, так что функциями Х(х) с точностью до постоянного множителя являются sin у/Хх. Из второго граничного условия Положим А = ir. Тогда Для отыскания и получаем трансцендентное уравнение. Корни этого уравнения можно найти графически, взяв в плоскости (f, z) сечения последовательных ветвей кривой z = tg(i//) прямой линией z = (рис. 7).

Обе части уравнения (18) — нечетные функции относительно р, поэтому каждому положительному корню i/fc соответствует равный ему по абсолютной величине отрицательный корень. Поскольку изменение знака Uk не влечет за собой появления новых собственных функций (они только изменят знак, что несущественно), достаточно ограничиться положительными корнями уравнения (18).

В результате опять получается последовательность собственных значений и отвечающие им последовательности собственных функций и собственных колебаний Кстати, для n-ой собственной частоты ип получается асимптотическое соотношение в частности, для I = т имеем Если правый конец струны х = I свободен, получаем cos vl = 0. Отсюда ul = § + тиг, так что в случае свободного конца собственные значения и собственные функции соответственно равны

Присылайте задания в любое время дня и ночи в ➔ Метод разделения переменных при решении дифференциальных уравненийМетод разделения переменных при решении дифференциальных уравнений

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения с разделяющимися переменными

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только в левую часть, а выражение, зависящее от x — только в правую часть, это дифференциальные уравнения с разделяющимися переменными, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения. Пример такого уравнения — Метод разделения переменных при решении дифференциальных уравнений.

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения следует проинтегрировать обе части уравнения. Пример такого уравнения — Метод разделения переменных при решении дифференциальных уравнений.

Пример 1. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Метод разделения переменных при решении дифференциальных уравнений

Таким образом, получили функцию — решение данного уравнения.

Пример 2. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений

Решение. Интегрируем обе части уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Метод разделения переменных при решении дифференциальных уравнений

Функция — решение уравнения — получена. Как видим, нужно только уверенно знать табличные интегралы и неплохо расправляться с дробями и корнями.

Видео:Логистический рост и метод отделения (разделения) переменныхСкачать

Логистический рост и метод отделения (разделения) переменных

Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные, имеют вид

Метод разделения переменных при решении дифференциальных уравнений.

В таком уравнении Метод разделения переменных при решении дифференциальных уравненийи Метод разделения переменных при решении дифференциальных уравнений— функции только переменной x, а Метод разделения переменных при решении дифференциальных уравненийи Метод разделения переменных при решении дифференциальных уравнений— функции только переменной y.

Поделив члены уравнения на произведение Метод разделения переменных при решении дифференциальных уравнений, после сокращения получим

Метод разделения переменных при решении дифференциальных уравнений.

Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть переменные разделены.

Левая часть полученного уравнения — дифференциал некоторой функции переменной x, а правая часть — дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член в правую часть, можно почленно интегрировать без такого переноса.

Пример 3. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на произведение Метод разделения переменных при решении дифференциальных уравненийи получим

Метод разделения переменных при решении дифференциальных уравнений.

Метод разделения переменных при решении дифференциальных уравнений,

Метод разделения переменных при решении дифференциальных уравненийили Метод разделения переменных при решении дифференциальных уравнений,

поскольку левая часть равенства есть сумма арифметических значений корней. Таким образом, получили общий интеграл данного уравнения. Выразим из него y и найдём общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Есть задачи, в которых для разделения переменных уравнение нужно не делить почленно на произведение некоторых функций, а почленно умножать. Таков следующий пример.

Пример 4. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Решение. Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения, задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как Метод разделения переменных при решении дифференциальных уравнений, то перепишем данное уравнение в виде

Метод разделения переменных при решении дифференциальных уравнений.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение Метод разделения переменных при решении дифференциальных уравнений, получаем

Метод разделения переменных при решении дифференциальных уравнений.

Метод разделения переменных при решении дифференциальных уравнений

Первый интеграл находим интегрированием по частям, а второй — табличный. Следовательно,

Метод разделения переменных при решении дифференциальных уравнений.

Логарифимруя обе части равенства, получаем общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Видео:Метод разделения переменных - 1Скачать

Метод разделения переменных - 1

Решить примеры самостоятельно, а затем посмотреть правильные решения

Пример 5. Найти общее решение диффференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Пример 6. Найти общее решение диффференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Продолжаем решать примеры вместе

Пример 7. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на Метод разделения переменных при решении дифференциальных уравненийи получим

Метод разделения переменных при решении дифференциальных уравнений.

Чтобы найти y, требуется найти интеграл. Интегрируем по частям.

Пусть Метод разделения переменных при решении дифференциальных уравнений, Метод разделения переменных при решении дифференциальных уравнений.

Тогда Метод разделения переменных при решении дифференциальных уравнений, Метод разделения переменных при решении дифференциальных уравнений.

Находим общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений

Пример 8. Найти частное решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений,

удовлетворяющее условию Метод разделения переменных при решении дифференциальных уравнений.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на Метод разделения переменных при решении дифференциальных уравненийи получим

Метод разделения переменных при решении дифференциальных уравнений
или
Метод разделения переменных при решении дифференциальных уравнений.

Записываем производную y в виде Метод разделения переменных при решении дифференциальных уравненийи получаем

Метод разделения переменных при решении дифференциальных уравнений

Разделяем dy и dx и получаем уравнение:

Метод разделения переменных при решении дифференциальных уравнений, которое почленно интегрируя:

Метод разделения переменных при решении дифференциальных уравнений,

находим общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

Метод разделения переменных при решении дифференциальных уравнений.

Таким образом частное решение данного дифференциального уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

В некоторых случаях ответ (функцию) можно выразить явно. Для этого следует воспользоваться тем свойством логарифма, что сумма логарифмов равна логарифму произведения логарифмируемых выражений. Обычно это следует делать в тех случаях, когда слева искомая функция под логарифмом находится вместе с каким-нибудь слагаемым. Рассмотрим два таких примера.

Пример 9. Найти общее решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных запишем производную «игрека» в виде Метод разделения переменных при решении дифференциальных уравненийи получим

Метод разделения переменных при решении дифференциальных уравнений.

Разделяем «игреки» и «иксы»:

Метод разделения переменных при решении дифференциальных уравнений.

Почленно интегрируем и, так как в левой части «игрек» присутствует со слагаемым, в правой части константу интегрирования записываем также под знаком логарифма:

Метод разделения переменных при решении дифференциальных уравнений.

Теперь по свойству логарифма Метод разделения переменных при решении дифференциальных уравненийимеем

Метод разделения переменных при решении дифференциальных уравнений.

Находим общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений

Пример 10. Найти частное решение дифференциального уравнения

Метод разделения переменных при решении дифференциальных уравнений,

удовлетворяющее условию Метод разделения переменных при решении дифференциальных уравнений.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на Метод разделения переменных при решении дифференциальных уравненийи получим

Метод разделения переменных при решении дифференциальных уравнений
или
Метод разделения переменных при решении дифференциальных уравнений.

Разделяем dy и dx и получаем уравнение:

Метод разделения переменных при решении дифференциальных уравнений
которое почленно интегрируя:

Метод разделения переменных при решении дифференциальных уравнений

находим общее решение уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

Метод разделения переменных при решении дифференциальных уравнений.

Таким образом частное решение данного дифференциального уравнения:

Метод разделения переменных при решении дифференциальных уравнений.

Выводы. В дифференциальных уравнениях с разделяющимися переменными, как в тех, в которых переменные уже разделены, так и в тех, где переменные требуется разделить, существуют однозначные способы решения, на основе которых может быть построен простой алгоритм. Если недостаточно уверенно освоен материал по нахождению производной и решению интегралов, то требуется его повторить. Во многих задачах на путь к решению уравнения наводят знания и приёмы из элементарной (школьной) математики.

📽️ Видео

Метод разделения переменных - 3Скачать

Метод разделения переменных - 3

Дифференциальные уравнения с разделяющимися переменными. Урок 1Скачать

Дифференциальные уравнения с разделяющимися переменными. Урок 1

Дифференциальные уравнения с разделенными переменными. 11 класс.Скачать

Дифференциальные уравнения с разделенными переменными. 11 класс.

Метод разделения переменных - 2Скачать

Метод разделения переменных - 2

Общие понятия дифференциальных уравнений. Разделение переменных | Лекция 13 | МатАн | СтримСкачать

Общие понятия дифференциальных уравнений. Разделение переменных | Лекция 13 | МатАн | Стрим

Дифференциальное уравнение. Разделение переменныхСкачать

Дифференциальное уравнение. Разделение переменных

11. Общая схема метода разделения переменныхСкачать

11. Общая схема метода разделения переменных
Поделиться или сохранить к себе: