- Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
- Основные равносильные преобразования уравнений:
- Равносильные уравнения и уравнения следствия
- Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
- Равносильные уравнения, преобразование уравнений
- Понятие равносильных уравнений
- Понятие уравнений-следствий
- Технология применения равносильных преобразований при решении алгебраических соотношений. Методическое пособие для школьников старших классов.
- 📹 Видео
Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
- Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) — ни одно из них не имеет корней.
- А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).
Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Основные равносильные преобразования уравнений:
- Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.
Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.
Применение всех формул и свойств, которые есть в математике.
Возведение в нечетную степень обеих частей уравнения.
Извлечение корня нечетной степени из обеих частей уравнения.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Равносильные уравнения и уравнения следствия
Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:
Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt=sqrt+3)
Перенесем оба слагаемых из правой части в левую.
Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.
Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .
Сверяем корни с ОДЗ и исключаем неподходящие.
(↑) не подходит под ОДЗ
Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .
Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.
Решение:
В пункте a) применялось равносильное преобразование 1.
В пункте b) перешли к уравнению следствию, так как (sqrt) «ушло», то ОДЗ расширилось;
В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;
В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;
В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;
В пункте f) перешли от вида (a^=a^) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.
Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Равносильные уравнения, преобразование уравнений
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Видео:Решение неравенства методом интерваловСкачать
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.
Видео:Иррациональные уравнения. Метод равносильных преобразований.Скачать
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.
Видео:Равносильные переходы при решении иррациональных уравненийСкачать
Технология применения равносильных преобразований при решении алгебраических соотношений. Методическое пособие для школьников старших классов.
В данной работе изложен подход, который, на взгляд автора, способен эффективно устранить указанные недостатки алгебраической подготовки школьников. В основе указанного подхода лежит системное применение принципа преобразований алгебраических соотношений. Основные элементы данного подхода излагаются в виде следующих положений.
Классификация соотношений. Алгебраические соотношения разбиваются на 6 классов соответствий с входящими в них функциями (многочлены, с модулем, рациональные, иррациональные, тригонометрические, показательно-логарифмические). В каждом из перечисленных классов выделяются соотношения канонического вида, которые могут быть решены с помощью непосредственного применения равносильных методов. Не являющиеся каноническими соотношения в подавляющем большинстве случаев можно привести к каноническим с помощью равносильных преобразований. Исключения могут составить соотношения иррационального и логарифмического класса. Однако в этом случае для большинства конкурсных задач достаточным для неизменности множества корней является вычисление области определения соотношения. К положительной стороне предлагаемой классификации можно отнести малочисленность используемых равносильных методов решения канонических классов: формулы корней, равносильные схемы, метод интервалов. Метод интервалов и является здесь единственным универсальным (применимым для всех классов функций) методом. Список равносильных схем (см. Приложение 1) в каждом из классов не превышает пяти и в принципе может быть ограничен тремя – для уравнения и двух видов неравенств.
Правила вывода (Modus ponens). Преобразования алгебраических соотношений происходят по правилам математической логики и теории множеств и могут быть описаны двумя теоретико-множественными (логическими) операциями – пересечения (логического умножения, логической зависимости) и объединения (логического сложения, логической независимости). В алгебраической записи им соответствуют фигурная скобка (система соотношений) и квадратная скобка (совокупность соотношений). Результатом всякого преобразования является освобождение от одного из присутствующих в исходном соотношении классов функций и, в конечном счете, получение за конечное число равносильных преобразований систем и совокупностей многочленов, как правило, не выше второй степени.
Описанный подход обладает достоинствами быстроты и надежности решения всех классов алгебраических соотношений за счет относительно небольшого набора необходимых теоретических сведений и логической ясности метода, что проявилось на подготовительных курсах, при чтении специальных курсов в гимназиях и школах как обычных, так и с повышенной математической подготовкой. На основе данного подхода теоретически и методически разработан курс обучения школьников решению такого сложного класса алгебраических задач, как задачи параметрического анализа, также апробированный в учебных заведениях и реализованный в виде графоаналитического обучающего комплекса.
📹 Видео
Дробно-рациональные уравнения. 8 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать
Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6Скачать
Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
Иррациональные уравнения и их системы. 11 класс.Скачать
Урок 5 ТОЖДЕСТВА. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ 7 КЛАСССкачать
Как решать иррациональные уравнения. Методы решения иррациональных уравнений. (часть 1).Скачать
8 класс, 4 урок, Преобразование алгебраических выраженийСкачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать
11 класс, 26 урок, Равносильность уравненийСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
8 класс, 38 урок, Иррациональные уравненияСкачать
Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать