Метод прямоугольника система линейных уравнений

Видео:Метод Жордана-Гаусса (метод прямоугольников). ВидеоурокСкачать

Метод Жордана-Гаусса (метод прямоугольников). Видеоурок

Правило прямоугольника

Алгоритм пересчета таблиц по правилу прямоугольника.
Выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

Назначение сервиса . Онлайн-калькулятор Правило прямоугольника предназначен для пересчета таблиц методом жордановских преобразований.

  • Шаг №1
  • Шаг №2

Метод прямоугольника система линейных уравнений

Примечание. Данный метод не стоит путать с формулой прямоугольников.

Пример №1 . Производится пересчет элементов новой симплекс-таблицы. Каким будет значение элемента x25 в новой симплекс-таблице, если до пересчета x25 = -3 , x27 =5 , х45 = -8 , х47 =2

Пример №2 . По приведенной ниже симплекс-таблице определите, является ли соответствующее ей базисное решение оптимальным. Если решение не является оптимальным, осуществите пересчет таблицы.

ПЧX3X4
F-52-1
X1421
X2312

Решение.
Базисное решение называется допустимым базисным решением, если значения входящих в него базисных переменных xj≥0, что эквивалентно условию неотрицательности bj≥0.
Поскольку X1 = 4 > 0, X2 = 3 > 0, то это допустимое базисное решение. Определим, является ли оно оптимальным. Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить. В индексной строке X4 = -1 1 /2
Следовательно, 2-ая строка является ведущей. Вместо переменной x4 в план войдет переменная x2.
Таблица 1

ПЧX3X4
F-52-1
X1421
X2312

Разрешающий элемент РЭ=2. Строка, соответствующая переменной x2 , получена в результате деления всех элементов строки x на разрешающий элемент РЭ=2 (см. табл.2) . На месте разрешающего элемента получаем 1. В остальных клетках столбца x2 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника. Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ — (А*В)/РЭ
СТЭ — элемент старого плана, РЭ — разрешающий элемент (2), А и В — элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ (см. табл.2).
Формируем таблицу.

Таблица 2

4-(3 • 1):22-(1 • 1):21-(2 • 1):2
3 : 21 : 22 : 2
-5-(3 • -1):22-(1 • -1):2-1-(2 • -1):2

Получаем новую таблицу:

Таблица 3

ПЧX3X2
F-3 1 /22 1 /20
X12 1 /21 1 /20
X41 1 /21 /21

Поскольку X3≥0, X2≥0, то получили оптимальный план.

Пример №3 . Решить задачу линейного программирования симплекс-методом, используя в качестве начальной угловой точки:
f(x) = -2x1 + x2 + 4x3 – x4 – x5 → min
x2 + 2x4 – x5 = 1
x1 — x4 – x5 = 1
2x2 + x3 + 2x5 = 4
xj ≥ 0, j=1. 5, x 0 = (1;1;2;0;0)

Затем систему ограничений преобразуем методом Гаусса-Жордана к такой форме, чтобы базисными стали переменные x1, x2, x3, а вектор b = (1, 1, 2) T

-10-10-21
-1-10011
-40-2-10-2
0-214-1-1

Итерация №1. Разрешающий элемент РЭ=-1.
Формируем таблицу.
Строка, соответствующая переменной x2 , получена в результате деления всех элементов строки x2 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x2 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

-10-10-21
1100-1-1
-40-2-10-2
2014-3-3

Итерация №2. Разрешающий элемент РЭ=-1.
Строка, соответствующая переменной x4, получена в результате деления всех элементов строки x3 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x4 записываем нули.
Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

-10-10-21
1100-1-1
402102
-140-70-3-11

Итерация №3. Разрешающий элемент РЭ=-1. Строка, соответствующая переменной x3 , получена в результате деления всех элементов строки x1 на разрешающий элемент РЭ=-1. На месте разрешающего элемента получаем 1. В остальных клетках столбца x3 записываем нули. Все остальные элементы, включая элементы индексной строки, определяются по правилу прямоугольника.
Получаем новую таблицу:

10102-1
1100-1-1
2001-44
-700011-18

Далее необходимо переназначить переменные и решать симплекс-методом.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Высшая математика и экономика

Образовательные онлайн сервисы: теория и практика

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Примеры — Линейная алгебра

Решение системы линейных уравнений методом Жордана-Гаусса (метод прямоугольников)

Видеоурок: Метод Жордана-Гаусса (метод прямоугольников)

Пример из видеоурока в рукописном виде:

Метод прямоугольника система линейных уравнений

Пример 2.

Метод прямоугольника система линейных уравнений

Запишем систему в виде:

4

-2

1

-2

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника: НЭ = СЭ — (А*В)/РЭ, где РЭ — разрешающий элемент (1), А и В — элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.

4

-2

9

2

Разрешающий элемент равен (-1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

8

2

9

4

Разрешающий элемент равен (1). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

8

6

4

9

Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.

-7.75

-12

-7.25

-2.25

Теперь исходную систему можно записать как:
x1 = -7.75 — 8×5 — 10.75×6
x2 = -12 — 10×5 — 11×6
x3 = -7.25 — 6×5 — 5.25×6
x4 = -2.25 — x5 — 1.25×6
Необходимо переменные x5,x6 принять в качестве свободных переменных и через них выразить остальные переменные.
Приравняем переменные x5,x6 к 0
x1 = -7.75
x2 = -12
x3 = -7.25
x4 = -2.25
Среди базисных переменных есть отрицательные значения. Следовательно, данное решение не опорное.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Метод Жордана-Гаусса для решения СЛАУ

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Основные понятия

Метод Жордана-Гаусса — один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса — в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã — обозначение расширенной матрицы системы.

Решить СЛАУ методом Жордана-Гаусса:

4 x 1 — 7 x 2 + 8 x 3 = — 23 2 x 1 — 4 x 2 + 5 x 3 = — 13 — 3 x 1 + 11 x 2 + x 3 = 16

Записываем расширенную матрицу системы:

à = 4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А :

A = 4 — 7 8 2 — 4 5 — 3 11 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным — в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Произвольный способ выбора разрешающих элементов

  • Первый этап:

Следует обратиться к 1-му столбцу матрицы Ã — необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 — 7 8 2 — 4 5 — 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I : 2 :

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I

Необходимо выполнить преобразования:

I — 4 × I I и I I I — ( — 3 ) × I I = I I I + 3 × I I

Запись I — 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I — 4 × I I = 4 — 7 8 — 23 — 4 1 — 2 5 / 2 — 13 / 2 = = 4 — 7 8 — 23 — 4 — 8 10 — 26 = 0 1 — 2 3

Записываются такие изменения следующим образом:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден — это 1. Обнуляем остальные элементы 2-го столбца:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I + 2 × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

I — ( — 2 ) × I I I = I + 2 × I I I и I I — ( — 3 2 ) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I →

→ 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1 .

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Выбор разрешающих элементов на главной диагонали матрицы системы

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом — второй, в 3-ем — третий и т.д.

  • Первый этап

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 → 2 — 4 5 | — 13 4 — 7 8 | — 23 — 3 11 1 | 16

Теперь разрешающий элемент — 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 1 — 2 5 / 2 | — 13 / 2 0 1 — 2 | 3 0 5 17 / 2 | — 7 / 2

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент — 1, поэтому никаких изменений производить не требуется:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент — 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = — 6 3 x 1 + x 2 + 2 x 4 = — 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = — 27 — 3 x 1 — 2 x 2 — 2 x 3 — 10 x 4 = 1

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | — 6 3 1 0 2 | 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором — второй строки, на третьем — третьей и т.д.

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | — 6 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | — 2 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I I — 3 × I I I I — 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5 → 1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I I ÷ ( — 1 ) → 1 1 / 3 2 / 3 5 / 3 | — 2 0 1 0 5 | 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I — 1 / 3 × I I I I I — 2 × I →

→ 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке — это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4 → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25 I I I ÷ ( — 2 ) → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 9 | — 25 I — 2 / 3 × I I I I V — 7 × I I I →

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39

Обнуляем четвертый столбец. Разрешающий элемент — — 39 2 :

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39 I V ÷ ( — 39 2 ) → 1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I — 5 × I V I I I — 3 / 2 × I V →

→ 1 0 0 0 | — 3 0 1 0 0 | — 5 0 0 1 0 | — 1 0 0 0 1 | 2 .

Ответ: x 1 = — 3 ; x 2 = — 5 ; x 3 = — 1 ; x 4 = 2

📽️ Видео

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Системы линейных уравнений (метод Гаусса)Скачать

Системы линейных уравнений (метод Гаусса)

Метод Жордана-Гаусса решения систем линейных уравнений.Скачать

Метод Жордана-Гаусса решения систем линейных уравнений.

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений
Поделиться или сохранить к себе: