Метод прогонки для дифференциальных уравнений python

Численное решение обыкновенных дифференциальных уравнений (ОДУ) в Python

Рассмотрены приемы решения обыкновенных дифференциальных уравнений (ОДУ) с помощью модуля scipy.integrate языка Python

Содержание
  1. Краткое описание модуля scipy.integrate
  2. Решение одного ОДУ
  3. Решение системы ОДУ
  4. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  5. Введение:
  6. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  7. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  8. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  9. Решение краевой задачи с поточно разделёнными краевыми условиями
  10. Вывод
  11. Digiratory
  12. Лаборатория автоматизации и цифровой обработки сигналов
  13. Оценка параметров ДУ в Python
  14. Постановка задачи
  15. Исходные данные
  16. Оценка параметров
  17. Визуализация
  18. Тестирование и пример использования
  19. 🎬 Видео

Видео:2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)Скачать

2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)

Краткое описание модуля scipy.integrate

Модуль scipy.integrate имеет две функции ode() и odeint(), которые предназначены для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (т.е. задача Коши).

Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат

Видео:6-5. Алгоритм прогонкиСкачать

6-5. Алгоритм прогонки

Решение одного ОДУ

Допустим надо решить диф. уравнение 1-го порядка

Получилось что-то такое:

Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Решение системы ОДУ

Пусть теперь мы хотим решить (автономную) систему диф. уравнений 1-го порядка

Выходной массив w состоит из двух столбцов — y1(t) и y2(t).

Также без труда можно построить фазовые траектории:

Видео:VB.net - СЛАУ Метод прогонкиСкачать

VB.net - СЛАУ Метод прогонки

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Метод прогонки для дифференциальных уравнений python

и начальным условиям

Метод прогонки для дифференциальных уравнений python

Перед решением эта задача должна быть переписана в виде следующей СДУ

Метод прогонки для дифференциальных уравнений python(1)

с начальными условиями

Метод прогонки для дифференциальных уравнений python

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Метод прогонки для дифференциальных уравнений pythonпри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Метод прогонки для дифференциальных уравнений pythonпри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Метод прогонки для дифференциальных уравнений python

Они могут быть векторами или скалярами. По умолчанию

Метод прогонки для дифференциальных уравнений python

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Метод прогонки для дифференциальных уравнений python(2)

Метод прогонки для дифференциальных уравнений python(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Метод прогонки для дифференциальных уравнений pythonобозначим Метод прогонки для дифференциальных уравнений python. Метод сходится в точке Метод прогонки для дифференциальных уравнений pythonесли Метод прогонки для дифференциальных уравнений pythonпри Метод прогонки для дифференциальных уравнений python. Метод имеет р-й порядок точности, если Метод прогонки для дифференциальных уравнений python, р > 0 при Метод прогонки для дифференциальных уравнений python. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Метод прогонки для дифференциальных уравнений python(4)

При Метод прогонки для дифференциальных уравнений pythonимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Метод прогонки для дифференциальных уравнений pythonв (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Метод прогонки для дифференциальных уравнений python(5)

а на этапе корректора (уточнения) — схема

Метод прогонки для дифференциальных уравнений python

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Метод прогонки для дифференциальных уравнений python(6),

Метод прогонки для дифференциальных уравнений python

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Метод прогонки для дифференциальных уравнений pythonпри Метод прогонки для дифференциальных уравнений pythonимеем явный метод Рунге—Кутта. Если Метод прогонки для дифференциальных уравнений pythonпри j>1 и Метод прогонки для дифференциальных уравнений pythonто Метод прогонки для дифференциальных уравнений pythonопределяется неявно из уравнения:

Метод прогонки для дифференциальных уравнений python(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Метод прогонки для дифференциальных уравнений pythonопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Метод прогонки для дифференциальных уравнений python

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Метод прогонки для дифференциальных уравнений python(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Метод прогонки для дифференциальных уравнений pythonметода

Метод прогонки для дифференциальных уравнений python(9)

С учётом(9) общее решение имеет вид:

Метод прогонки для дифференциальных уравнений python(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Метод прогонки для дифференциальных уравнений pythonс использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Метод прогонки для дифференциальных уравнений python

Метод прогонки для дифференциальных уравнений python

Метод прогонки для дифференциальных уравнений python

Метод прогонки для дифференциальных уравнений python

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Метод прогонки для дифференциальных уравнений python

где Метод прогонки для дифференциальных уравнений python– радиус вектор движущегося тела, Метод прогонки для дифференциальных уравнений python– вектор скорости тела, Метод прогонки для дифференциальных уравнений python– коэффициент сопротивления, вектор Метод прогонки для дифференциальных уравнений pythonсилы веса тела массы m, g – ускорение свободного падения.

Метод прогонки для дифференциальных уравнений python

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Метод прогонки для дифференциальных уравнений python, то в координатной форме мы имеем систему уравнений:

Метод прогонки для дифференциальных уравнений python

К системе следует добавить начальные условия: Метод прогонки для дифференциальных уравнений python(h начальная высота), Метод прогонки для дифференциальных уравнений python. Положим Метод прогонки для дифференциальных уравнений python. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Метод прогонки для дифференциальных уравнений python

Для модельной задачи положим Метод прогонки для дифференциальных уравнений python. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Метод прогонки для дифференциальных уравнений python

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Метод прогонки для дифференциальных уравнений python

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Метод прогонки для дифференциальных уравнений python(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Метод прогонки для дифференциальных уравнений python
Введем обозначение для решения задачи Коши:
Метод прогонки для дифференциальных уравнений python

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Метод прогонки для дифференциальных уравнений python
Введем обозначение для решения задачи Коши:
Метод прогонки для дифференциальных уравнений python

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Метод прогонки для дифференциальных уравнений python

Введем обозначение для решения задачи Коши:

Метод прогонки для дифференциальных уравнений python

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Метод прогонки для дифференциальных уравнений python
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Метод прогонки для дифференциальных уравнений python(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Метод прогонки для дифференциальных уравнений python

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

Видео:Метод: Прогонки(Лекция 3)Скачать

Метод: Прогонки(Лекция 3)

Digiratory

Видео:Python - поле направлений дифференциального уравненияСкачать

Python - поле направлений дифференциального уравнения

Лаборатория автоматизации и цифровой обработки сигналов

Метод прогонки для дифференциальных уравнений python

Видео:Методы решения нелинейных краевых задач для ОДУСкачать

Методы решения нелинейных краевых задач для ОДУ

Оценка параметров ДУ в Python

Одной из распространенных задач, возникающих при исследовании различных объектов — построение математической модели. Нередко математическая модель представляется в виде системы дифференциальных уравнений, однако непосредственное измерение всех, входящих в них параметров, как правило, невозможно по различным причинам. В таком случае, одним из подходов является проведение идентификационных экспериментов и оценка параметров ДУ путем решения оптимизационной задачи.

В статье рассмотрен простой способ оценки параметров системы ДУ в форме Коши на языке Python.

Видео:01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPyСкачать

01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPy

Постановка задачи

Разработка простого модуля Python для решения задачи оценки параметров.
Исходные данные для задачи:

  • Представление модели в форме Коши, первые N величин — наблюдаемы (порядок уравнений не имеет значения с точки зрения математики, но упорядочивание сильно упростит жизнь при разработке);
  • Имеются данные эксперимента, на основе которого будет производится оценка параметров/

Видео:Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Исходные данные

Исходными данными, передаваемыми при создании экземпляра класса оценки параметров являются:

  1. Функция, реализующая вычисление ДУ.
  2. Массив экспериментальных данных (Два массива: время и значения)

Таким образом, получаем следующий класс с конструктором:

Тут просто сохраняются значения параметров и функция в поля класса.

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Оценка параметров

Процедуру оценки параметров можно сделать на основе функции scipy.optimize.leastsq. Эта функция минимизирует сумму квадратов полученных величин и может принимать два интересных для начального понимания аргумента: func и x0.

Функция func должна принимать один аргумент (который м.б. вектором), являющийся параметрами, а x0 — начальные значения параметров.

Метод оценки параметров можно реализовать следующим образом:

Метод получает начальные значения начальных условий ДУ и начальные значения параметров системы. Функцию вычисления вектора ошибок между решением системы ДУ с текущими значениями параметров и экспериментальными значениями необходимо реализовывать самостоятельно, потому, следующим шагом будет ее написание:

Функция получает вектор параметров системы (включая начальные условия ДУ).

Предложенная функция содержит вызов еще одной функции my_ls_func, выделенной для разделения функционала. Выглядит она следующим образом и вычисляет непосредственно решение системы ДУ при заданных параметрах:

Таким образом, процедура оценки параметров работает следующим образом:

  1. Вычисляется решение системы ДУ при текущих (или начальных) значения параметров.
  2. Рассчитывается вектор ошибки между решением и экспериментальными данными.
  3. Производится корректировка значений параметров.
  4. Переход на шаг 1, если не достигнуто максимальное число итераций или минимальное рассогласование.

Видео:Решение системы ОДУ в PythonСкачать

Решение  системы ОДУ в Python

Визуализация

Для визуализации напишем следующую функцию:

где calcODE — еще одна служебная функция для расчета системы ДУ:

Видео:#5. Математические функции и работа с модулем math | Python для начинающихСкачать

#5. Математические функции и работа с модулем math | Python для начинающих

Тестирование и пример использования

В качестве примера использования попробуем оценить параметры системы ДУ, описывающие маятник с трением.

где (theta ) — угол, (omega) — скорость.

Этот объект уже использовался в качестве иллюстрации к статье о фазовых портретах и частотному методу синтеза регуляторов.

Для получения «экспериментальных» данных воспользуемся решением системы ДУ с известными «истинными» параметрами:

Объявленная тут система будет использоваться и для оценки параметров, но уже без известных значений:

Получившиеся результаты являются достаточно точно оценкой:

Real parameter: b = 0.3, c = 5.0
Real initial condition: 1 0
Estimated parameter: b = 0.299993833612628, c = 5.000066486504925
Estimated initial condition: [ 9.99976783e-01 1.58491793e-04]Метод прогонки для дифференциальных уравнений python

🎬 Видео

Python для самых маленьких. Линейные уравнения. Решение задачСкачать

Python для самых маленьких. Линейные уравнения. Решение задач

Метод Гаусса решения СЛАУ. Метод прогонки. Итерационные методы. Численные методы. Лекция №3Скачать

Метод Гаусса решения СЛАУ. Метод прогонки. Итерационные методы. Численные методы. Лекция №3

Решение ОДУ 2 порядка в PythonСкачать

Решение  ОДУ  2 порядка  в Python

34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

ООП 17 Магические методы __add__, __mul__, __sub__ и __truediv__Скачать

ООП 17 Магические методы __add__, __mul__, __sub__ и __truediv__

Методы численного анализа - Метод Рунге-Кутта для ОДУ 2 порядкаСкачать

Методы численного анализа - Метод Рунге-Кутта для ОДУ 2 порядка
Поделиться или сохранить к себе: