Метод приближенных вычислений при решении логарифмических уравнений

Содержание
  1. Вычисление логарифмов: способы, примеры, решения
  2. Вычисление логарифмов по определению
  3. Как решать «вложенные» логарифмические уравнения
  4. Тонкости и хитрости решения
  5. Логарифмические уравнения. Методы решения
  6. Формулы логарифмов. Логарифмы примеры решения
  7. Примеры решения логарифмов на основании формул
  8. Область допустимых значений (ОДЗ) логарифма
  9. Использование свойств логарифмов при вычислении
  10. Зачем в жизни нужны логарифмы?
  11. Пример Найдите корень уравнения.
  12. Степень можно выносить за знак логарифма
  13. Формула перехода к новому основанию
  14. Несколько простых примеров с логарифмами
  15. Сложные задачи
  16. Логарифм: что это? Все формулы. Простейшие уравнения и неравенства
  17. Нахождение логарифмов через другие известные логарифмы
  18. Методика решения логарифмических уравнений
  19. Логарифмические уравнения и системы
  20. п.1. Методы решения логарифмических уравнений
  21. п.2. Решение уравнений вида (log_a f(x)=log_a g(x))
  22. п.3. Решение уравнений вида (log_ f(x)=log_ g(x)) Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение. Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней. Например: Решим уравнение (log_(x^2-4)=log_(2-x)) Найдем ОДЗ в явном виде: ( begin x^2-4gt 0\ 2-xgt 0\ x+5gt 0\ x+5ne 1 end Rightarrow begin xlt -2cup xgt 2\ xlt 2\ xgt -5\ xne -4 end Rightarrow begin -5lt xlt -2\ xne -4 end Rightarrow xin (-5;-4)cup(-4;-2) ) Решаем уравнение: (x^2-4=2-x) (x^2+x-6=0) ((x+3)(x-2)=0) ( left[ begin x_1=-3\ x_2=2 — text end right. ) Ответ: -3 В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять! Например: Решим уравнение (log_(x+1)=log_(x+3)) Основания (2ne 4), и нельзя сразу написать (x+1=x+3). Нужно привести к одному основанию, преобразовав левую часть: (log_2(x+1)=log_(x+1)^2=log_4(x+1)^2) Тогда исходное уравнение примет вид: (log_4(x+1)^2=log_4(x+3)) И теперь: ((x+1)^2=x+3) (x^2+x-2=0) ((x+2)(x-1)=0) ( left[ begin x_1=-2\ x_2=1 end right. ) Что касается ОДЗ, то её нужно искать для исходного уравнения: ( begin x+1gt 0\ x+3gt 0 end Rightarrow begin xgt -1\ xgt -3 end Rightarrow xgt -1 ) Корень (x_1=-2lt -1) — не подходит. Ответ: 1 Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни. Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны. Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований. п.4. Примеры Пример 1. Решите уравнения: a) ( log_2(x+1)-log_2(x-1)=1 ) ОДЗ: ( begin x+1gt 0\ x-1gt 0 end Rightarrow begin xgt -1\ xgt 1 end Rightarrow xgt 1 ) (log_2left((x+1)(x-1)right)=log_22) (x^2-1=2Rightarrow x^2 =3) ( left[ begin x_1=-sqrtlt 2 — text\ x_2=sqrt end right. ) Ответ: (sqrt) б) ( 2log_5(x-1)=log_5(1,5x+1) ) ОДЗ: ( begin x-1gt 0\ 1,5x+1gt 0 end Rightarrow begin xgt 1\ xgt-frac23 end Rightarrow xgt 1 ) Преобразуем: (2log_5(x-1)=log_5(x-1)^2) Получаем: (log_5(x-1)^2=log_5(1,5x+1)) ((x-1)^2=1,5x+1) (x^2-2x+1-1,5x-1=0Rightarrow x^2-3,5x=0Rightarrow x(x-3,5)=0) ( left[ begin x_1=0lt 1 — text\ x_2=3,5 end right. ) Ответ: 3,5 в) ( log_3(3-x)+log_3(4-x)=1+2log_3 2 ) ОДЗ: ( begin 3-xgt 0\ 4-xgt 0 end Rightarrow begin xlt 3\ xlt 4 end Rightarrow xlt 3 ) Преобразуем: (1+2log_3 2=log_3 3+log_3 2^2=log_3(3cdot 4)=log_3 12) Получаем: (log_3left((3-x)(4-x)right)=log_3 12) ((3-x)(4-x)=12Rightarrow 12-7x+x^2=12Rightarrow x(x-7)=0) ( left[ begin x_1=0\ x_2=7gt 3 — text end right. ) Ответ: 0 г) ( log_2^2x+log_2 x^2+1=0 ) ОДЗ: (xgt 0) (log_2x^2=2log_2x) Получаем: (log_2^2x+2log_2x+1=0) Замена: (t=log_2 x) (t^2+2t+1=0Rightarrow(t+1)^2=0Rightarrow t=-1) Возвращаемся к исходной переменной: (log_2x=-1) (x=2^=frac12) Ответ: (frac12) д) ( x^=10 ) ОДЗ: (xgt 0) Замена: (t=lg ⁡x). Тогда (x=10^t) Подставляем: ((10^t)^t=10Rightarrow 10^=10^1Rightarrow t^2=1Rightarrow t=pm 1) Возвращаемся к исходной переменной: ( left[ begin lg x=-1\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,1\ x_2=10 end right. ) Оба корня подходят. Ответ: e) ( sqrtcdot log_5(x+3)=0 ) ОДЗ: ( begin xgeq 0\ x+3gt 0 end Rightarrow begin xgeq 0\ xgt -3 end Rightarrow xgeq 0 ) ( left[ begin sqrt=0\ log_5(x+3)=0 end right. Rightarrow left[ begin x=0\ x+3=5^0=1 end right. Rightarrow left[ begin x_1=0\ x_2=-2lt 0 — text end right. ) Ответ: 0 ж) ( log_2+2log_x=log_(x+1) ) ОДЗ: ( begin xgt 0\ x+1gt 0\ 5x-2gt 0\ 5x-2ne 1 end Rightarrow begin xgt 0\ xgt -1\ xgtfrac25\ xnefrac35 end Rightarrow begin xgtfrac25\ xnefrac35 end ) Преобразуем: (log_2+2log_x=log_(2x^2)) Подставляем: (log_(2x^2)=log_(x+1)) ( 2x^2=x+1Rightarrow 2x^2-x-1=0Rightarrow (2x+1)(x-1)=0 Rightarrow left[ begin x_1=-frac12 — text\ x_2=1 end right. ) Ответ: 1 Пример 2*. Решите уравнения: a) ( log_4log_2log_3(2x-1)=frac12 ) ОДЗ: ( begin 2x-1gt 0\ log_3(2x-1)gt 0\ log_2log_3(2x-1)gt 0 end Rightarrow begin xgtfrac12\ 2x-1gt 3^0\ log_3(2x-1)gt 2^0 end Rightarrow begin xgtfrac12\ xgt 1\ 2x-1gt 3^1 end Rightarrow ) ( Rightarrow begin xgtfrac12\ xgt 1\ xgt 2 end Rightarrow xgt 2 ) Решаем: (log_2log_3(2x-1)=4^=2) (log_3(2x-1)=2^2=4) (2x-1=3^4=81) (2x=82) (x=41) Ответ: 41 б) ( log_2(9-2^x)=25^<log_5sqrt> ) ОДЗ: ( begin 9-2xgt 0\ 3-xgt 0 end Rightarrow begin 2^xlt 9\ xlt 3 end Rightarrow begin xltlog_2 9\ xlt 3 end Rightarrow xlt 3 ) Преобразуем: (25^<log_5sqrt>=25^<log_(sqrt)^2>=25^<log_(3-x)>=3-x) Подставляем: (log_2(9-2^x)=3-x) (9-2^x=2^) (9-2^x-frac=0) Замена: (t=2^xgt 0) ( 9-t-frac8t=0Rightarrow frac=0Rightarrow begin t^2-9t+8gt 0\ tne 0 end Rightarrow begin (t-1)(t-8)=0\ tne 0 end Rightarrow left[ begin t_1=1\ t_2=8 end right. ) Возвращаемся к исходной переменной: ( left[ begin 2^x=1\ 2^x=8 end right. Rightarrow left[ begin 2^x=2^0\ 2^x=2^3 end right. Rightarrow left[ begin x_1=0\ x_2=3 end right. ) По ОДЗ (xlt 3), второй корень не подходит. Ответ: 0 в) ( lgsqrt+lgsqrt+1=lg 30 ) ОДЗ: ( begin x-5gt 0\ 2x-3gt 0 end Rightarrow begin xgt 5\ xgtfrac32 end Rightarrow xgt 5 ) Преобразуем: (lg 30-1=lg 30-lg 10=lgfrac=lg 3) Подставляем: (lgsqrt+lgsqrt=lg 3) (frac12lg(x-5)+frac12lg(2x-3)=lg 3 |cdot 2) (lg(x-4)+lg(2x-3)=2lg 3) (lgleft((x-5)(2x-3)right)=lg 3^2) ((x-5)(2x-3)=9Rightarrow 2x^2-13x+15-9=0 Rightarrow 2x^2-13x+6=0) ( (2x-1)(x-6)=0Rightarrow left[ begin x_1=frac12lt 5 — text\ x_2=6 end right. ) Ответ: 6 г) ( frac+frac+frac=0 ) ОДЗ: ( begin xgt 0\ lg xne 0\ lg 10xne 0\ lg 100xne 0 end Rightarrow begin xgt 0\ xne 1\ 10xne 1\ 100xne 1 end Rightarrow begin xgt 0\ xneleft<frac;frac;1right> end ) Преобразуем: (lg 10x=lg 10+lg x=1+lg 10) (lg 100x=lg 100+lg x=2+lg x) Подставляем: (frac+frac+frac=0) Замена: (t=lg x) begin frac1t+frac+frac=0Rightarrow frac1t+frac=-fracRightarrow frac=-fracRightarrow (1+2t)(2+t)=(1+t)\ 2_5t+2t^2=-3t-3t^2Rightarrow 5t^2+8t+2=0\ D=8^2-4cdot 5cdot 2=24, t=frac<-8pm 2sqrt>=frac<-4pm sqrt> end Возвращаемся к исходной переменной: $$ left[ begin lg x=frac<-4- sqrt>\ lg x=frac<-4+ sqrt> end right. Rightarrow left[ begin x=10frac<-4- sqrt>\ x=10frac<-4+ sqrt> end right. $$ Оба корня подходят. Ответ: (left<10frac<-4pmsqrt>right>) e) ( x^<frac>=10^ ) ОДЗ: (xgt 0) Замена: (t=lg x.) Тогда (x=10^t) Подставляем: begin (10^t)^<frac>=10^\ frac=t+1Rightarrow t(t+7)=4(t+1)Rightarrow t^2+7t-4t-4=0\ t^2+3t-4=0Rightarrow (t+4)(t-1)=0Rightarrow left[ begin t_1=-4\ t_2=1 end right. end Возвращаемся к исходной переменной: $$ left[ begin lg x=-4\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,0001\ x_2=10 end right. $$ Оба корня подходят. Ответ: (left) ж) ( 4^=(2x^2+2x+5)^ ) ОДЗ: ( begin 1-xgt 0\ 2x^2+2x+5gt 0 end Rightarrow begin xlt 1\ Dlt 0, xinmathbb end Rightarrow xlt 1 ) По условию: begin log_3(1-x)=log_4left((2x^2+2x+5)^right)\ log_3(1-x)=log_32cdotlog_4(2x^2+2x+5) end Перейдем к другому основанию: $$ frac=fraccdotfrac |cdot lg 3 $$ (frac=frac=frac=frac12) begin lg(1-x)=frac12cdotlg(2x^2+2x+5) |cdot 2\ 2lg(1-x)=lg(2x^2+2x+5)\ lg(1-x)^2=lg(2x^2+2x+5)\ (1-x)^2=2x^2+2x+5\ 1-2x+x^2=2x^2+2x+5\ x^2+4x+4=0\ (x+2)^2=0\ x=-2 end Ответ: -2 Пример 3. Решите систему уравнений: a) ( begin lg x+lg y=lg 2\ x^2+y^2=5 end ) ОДЗ: ( begin xgt 0\ ygt 0 end ) Из первого уравнения: (lg(xy)=lg 2Rightarrow xy=2) Получаем: ( begin xy=2\ x^2+y^2=5 end Rightarrow begin y=frac2x\ x^2+left(frac2xright)^2-5=0 end ) Решаем биквадратное уравнение: begin x^2+frac-5=0Rightarrowfrac=0Rightarrow begin x^4-5x^2+4=0\ xne 0 end \ (x^2-4)(x^2-1)=0Rightarrow left[ begin x^2=4\ x^2=1 end right. Rightarrow left[ begin x=pm 2\ x=pm 1 end right. end Согласно ОДЗ, оставляем только положительные корни. Получаем две пары решений: ( left[ begin begin x=1\ y=frac2x=2 end \ begin x=2\ y=frac22=1 end end right. ) Ответ: (left) б) ( begin x^=27\ x^=frac13 end ) ОДЗ: (xgt 0, xne 1) Логарифмируем: ( begin y+1=log_x27=log_x3^3=3log_x3\ 2y-5=log_xfrac13=log_x3^=-log_x3 end ) Замена: (z=log_x3) begin begin y+1=3z\ 2y-5=-z |cdot 3 end Rightarrow begin y+1=3z\ 6y-15=-3z end Rightarrow begin 7y-14=0\ z=5-2y end Rightarrow begin y=2\ z=1 end end Возвращаемся к исходной переменной: $$ begin y=2\ log_x3=1 end Rightarrow begin x^1=3\ y=2 end Rightarrow begin x=3\ y=2 end $$ Ответ: (3;2) в*) ( begin 3(log_y x-log_x y)=8\ xy=16 end ) ОДЗ: ( begin xgt 0, xne 1\ ygt 0, yne 1 end ) Сделаем замену (t=log_x y). Тогда (log_y x=frac=frac1t) Подставим в первое уравнение и решим его: begin 3left(frac1t-tright)=8Rightarrowfrac=frac83Rightarrow begin 3(1-t^2)=8t\ tne 0 end\ 3t^2+8t-3=0Rightarrow (3t-1)(t+3)=0Rightarrow left[ begin t_1=frac13\ t_2=-3 end right. end Прологарифмируем второе уравнение по (x): $$ log_x(xy)=log_x16Rightarrow 1+log_x y=log_x16Rightarrow 1+t=log_x 16 $$ Получаем: begin left[ begin begin t=frac13\ log_x16=1+t=frac43 end \ begin t=-3\ log_x16=1+t=-2 end end right. Rightarrow left[ begin begin t=frac13\ x^=16 end \ begin t=-3\ x^=16 end end right. Rightarrow left[ begin begin t=frac13\ x=(2^4)^=2^3=8 end \ begin t=-3\ x=(16)^=frac14 end end right. end Возвращаемся к исходной переменной: begin left[ begin begin x=8\ log_x y=frac13 end \ begin x=frac14\ log_x y=-3 end end right. Rightarrow left[ begin begin x=8\ y=8^=2 end \ begin x=frac14\ y=left(frac14right)^=64 end end right. end Ответ: (left) г*) ( begin (x+y)cdot 3^=frac\ 3log_5(x+y)=x-y end ) ОДЗ: (x+ygt 0) Прологарифмируем первое уравнение по 3: begin log_3left((x+y)cdot 3^right)=log_3frac\ log_3(x+y)+(y-x)=log_3frac\ log_3(x+y)-log_3frac=x-y end Получаем:(x-y=3log_5(x+y)=log_3(x+y)-log_3frac) Решим последнее уравнение относительно (t=x+y) begin 3log_5 t=log_3 t-log_3frac\ 3cdotfrac-log_3t=-log_3frac\ log_3tcdotleft(frac-1right)=-log_3frac\ log_3t=-frac<log_3frac><frac-1>=-frac=log_35\ t=5 end Тогда: (x-y=3log_5t=3log_55=3) Получаем систему линейных уравнений: begin begin x+y=5\ x-y=3 end Rightarrow begin 2x=5+3\ 2y=5-3 end Rightarrow begin x=4\ y=1 end end Требование ОДЗ (x+y=4+1gt 0) выполняется. Ответ: (4;1)
  23. п.4. Примеры
  24. 🔥 Видео

Видео:Круговорот воды в природе ➜ Решение логарифмических уравнений из ЕГЭ #ShortsСкачать

Круговорот воды в природе ➜ Решение логарифмических уравнений из ЕГЭ #Shorts

Вычисление логарифмов: способы, примеры, решения

Видео:Формула для приближенных вычисленийСкачать

Формула для приближенных вычислений

Вычисление логарифмов по определению

В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению. Давайте подробно рассмотрим, как происходит этот процесс.

Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: logab=logaa c =c .

Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

Найдите log22 −3 , а также вычислите натуральный логарифм числа e 5,3 .

Определение логарифма позволяет нам сразу сказать, что log22 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

Аналогично находим второй логарифм: lne 5,3 =5,3 .

log22 −3 =−3 и lne 5,3 =5,3 .

Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , …

Вычислите логарифмы log525 , Метод приближенных вычислений при решении логарифмических уравненийи Метод приближенных вычислений при решении логарифмических уравнений.

Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log525=log55 2 =2 .

Переходим к вычислению второго логарифма Метод приближенных вычислений при решении логарифмических уравнений. Число Метод приближенных вычислений при решении логарифмических уравненийможно представить в виде степени числа 7 : Метод приближенных вычислений при решении логарифмических уравнений(при необходимости смотрите степень с дробным показателем ). Следовательно, Метод приближенных вычислений при решении логарифмических уравнений.

Перепишем третий логарифм в следующем виде Метод приближенных вычислений при решении логарифмических уравнений. Теперь можно увидеть, что Метод приближенных вычислений при решении логарифмических уравнений, откуда заключаем, что Метод приближенных вычислений при решении логарифмических уравнений. Следовательно, по определению логарифма Метод приближенных вычислений при решении логарифмических уравнений.

Коротко решение можно было записать так: Метод приближенных вычислений при решении логарифмических уравнений.

log525=2 , Метод приближенных вычислений при решении логарифмических уравненийи Метод приближенных вычислений при решении логарифмических уравнений.

Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

Найдите значение логарифма Метод приближенных вычислений при решении логарифмических уравнений.

Разложение на простые множители числа под знаком логарифма имеет вид 7776=2 5 ·3 5 , откуда следует, что 7776=6 5 . Полученное выражение несложно представить в виде степени числа Метод приближенных вычислений при решении логарифмических уравнений. Так как Метод приближенных вычислений при решении логарифмических уравнений, то Метод приближенных вычислений при решении логарифмических уравнений(в последнем переходе мы использовали свойство степени в степени ). Таким образом, Метод приближенных вычислений при решении логарифмических уравнений. На этом вычисление логарифма завершено.

Метод приближенных вычислений при решении логарифмических уравнений.

В заключение этого пункта отметим, что мы не ставили целью рассмотреть все способы представления числа под знаком логарифма в виде некоторой степени основания. Наша цель заключалась в том, чтобы дать самые часто используемые варианты действий, приводящие к результату при вычислении логарифмов по определению.

Видео:Решение логарифмических уравнений #shortsСкачать

Решение логарифмических уравнений #shorts

Как решать «вложенные» логарифмические уравнения

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида log a f ( x ) = b , то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b :

Заметьте: a b — это аргумент. Точно так же в исходном уравнении аргументом является функция f ( x ). Затем мы переписываем уравнение и получаем вот такую конструкцию:

log a f ( x ) = log a a b

Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

В результате мы получим новое уравнение. При этом никаких ограничений на функцию f ( x ) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

Как видим, перед нами простейшее логарифмическое уравнение. В роли f ( x ) выступает конструкция 1 + 3 log2 x , а в роли числа b выступает число 2 (в роли a также выступает двойка). Давайте перепишем эту двойку следующим образом:

Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log5 5 2 . В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

Отсюда легко находится 3 log2 x :

Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

Давайте перейдем ко второму уравнению, оно чуть интересней:

Если обозначить выражение внутри большого логарифма функцией f ( x ), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log2 2 1 = log2 2.

Переписываем наше большое уравнение:

Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log2 4 = 2:

log1/2 (2 x − 1) + 2 = 2

Перед нами снова простейшее логарифмическое уравнение вида log a f ( x ) = b . Переходим к канонической форме, т. е. представляем ноль в виде log1/2 (1/2)0 = log1/2 1.

Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log2 x , то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

Видео:Логарифмические уравнения. 11 класс.Скачать

Логарифмические уравнения. 11 класс.

Тонкости и хитрости решения

Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Логарифмические уравнения. Методы решения

На самом деле существует целая масса подходов: это и разложение на множители, и потенцирование, и замена, и работа с основаниями…

Но все методы решения логарифмических уравнения роднит одно: их цель свести логарифмические уравнения к простейшему виду::

Если уравнение сведено к такому, что слева и справа от знака «равно» стоят логарифмы с одним основанием, то логарифмы мы «зачеркиваем» и решаем оставшееся уравнение.

Однако, тут есть один подводный камень: поскольку логарифм определен только тогда, когда

то после нахождения корней логарифмического уравнения, мы обязаны сделать проверку. Я не поленюсь и повторю еще раз:

В ЛОГАРИФМИЧЕСКИХ УРАВНЕНИЯХ МЫ ВСЕГДА ДЕЛАЕМ ПРОВЕРКУ ПОЛУЧЕННЫХ КОРНЕЙ!!

Те учащиеся, которые игнорируют это требование, как правило допускают глупейшие и непростительные ошибки!

Согласись, обидно решить правильно уравнение, а потом не сделать самую малость: проверку, и записать лишние корни, и записать из-за этого неправильный ответ!

Видео:✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис Трушин

Формулы логарифмов. Логарифмы примеры решения

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений
Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений
Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

Примеры решения логарифмов на основании формул

Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения logab = x, что равносильно ax = b, поэтому logaax = x.

log749 = 2, т.к. 72 = 49

Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log10100 = 2, т.к. 102 = 100

Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828… — иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

Основное логарифмическое тождество
a logab = b
Пример.
82log83 = (82log83)2 = 32 = 9

Логарифм произведения равен сумме логарифмов loga (bc) = logab + logac
Пример.
log38,1 + log310 = log3 (8,1*10) = log381 = 4

Логарифм частного равен разности логарифмов
loga (b/c) = logab — logac
Пример.
9 log550/9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81

Свойства степени логарифмируемого числа и основания логарифма

Показатель степени логарифмируемого числа logab m = mlogab

Показатель степени основания логарифма loganb =1/n*logab

loganb m = m/n*logab,

если m = n, получим loganb n = logab

log49 = log223 2 = log23

Переход к новому основанию
logab = logcb/logca,

если c = b, получим logbb = 1

тогда logab = 1/logba

log0,83*log31,25 = log0,83*log0,81,25/log0,83 = log0,81,25 = log4/55/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям.

Видео:84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать

84 людей этого не знают! Секретный способ решения Логарифмических Уравнений

Область допустимых значений (ОДЗ) логарифма

Теперь поговорим об ограничениях (ОДЗ – область допустимых значений переменных).

Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:

Метод приближенных вычислений при решении логарифмических уравнений

То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться .

Начнем с простого: допустим, что . Тогда, например, число не существует, так как в какую бы степень мы не возводили , всегда получается . Более того, не существует ни для какого . Но при этом может равняться чему угодно (по той же причине – в любой степени равно ). Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.

Похожая проблема у нас и в случае : в любой положительной степени – это , а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что ).

При мы столкнемся с проблемой возведения в дробную степень (которая представляется в виде корня: . Например, (то есть ), а вот не существует.

Поэтому и отрицательные основания проще выбросить, чем возиться с ними.

Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).

В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:

Вспомним определение: логарифм – это степень, в которую надо возвести основание , чтобы получить аргумент . И по условию, эта степень равна : .

Получаем обычное квадратное уравнение: . Решим его с помощью теоремы Виета: сумма корней равна , а произведение . Легко подобрать, это числа и .

Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?

– это явно неверно, так как основание не может быть отрицательным, то есть корень – «сторонний».

Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:

Тогда, получив корни и , сразу отбросим корень , и напишем правильный ответ.

Видео:Решение логарифмических уравнений ПРИМЕР #10 Метод разложения на множителиСкачать

Решение логарифмических уравнений ПРИМЕР #10 Метод разложения на множители

Использование свойств логарифмов при вычислении

Мощным инструментом вычисления логарифмов является использование свойств логарифмов .

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log11=logaa 0 =0 и logaa=logaa 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

Чему равны логарифмы Метод приближенных вычислений при решении логарифмических уравненийи lg10 ?

Так как Метод приближенных вычислений при решении логарифмических уравнений, то из определения логарифма следует Метод приближенных вычислений при решении логарифмических уравнений.

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

Метод приближенных вычислений при решении логарифмических уравненийи lg10=1 .

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства logaa p =p , которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу Метод приближенных вычислений при решении логарифмических уравнений, которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Вычислите логарифм Метод приближенных вычислений при решении логарифмических уравнений.

Число под знаком логарифма и основание логарифма можно записать в виде степени двойки: Метод приближенных вычислений при решении логарифмических уравненийи Метод приближенных вычислений при решении логарифмических уравнений. Таким образом, Метод приближенных вычислений при решении логарифмических уравнений. Для вычисления полученного логарифма воспользуемся свойством логарифма Метод приближенных вычислений при решении логарифмических уравнений, получаем Метод приближенных вычислений при решении логарифмических уравнений(при затруднениях с вычислениями смотрите статью действия с обыкновенными дробями ).

Метод приближенных вычислений при решении логарифмических уравнений.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Видео:11 класс, 17 урок, Логарифмические уравненияСкачать

11 класс, 17 урок, Логарифмические уравнения

Зачем в жизни нужны логарифмы?

Я уже говорил, что математики СУПЕРленивые люди? Это правда.

Вот представь себе, им лень умножать и они придумали логарифмы, которые позволяют заменить умножение сложением!

Им еще больше лень возводить в степень и они используют логарифмы, чтобы заменить возведение в степень умножением или делением!

То есть они используют логарифмы, чтобы быстро проделывать громоздкие вычисления.

Видео:Решение логарифмических уравнений. Вебинар | МатематикаСкачать

Решение логарифмических уравнений. Вебинар | Математика

Пример Найдите корень уравнения.

Метод приближенных вычислений при решении логарифмических уравнений

Здесь для решения данного логарифмического уравнения будем использовать свойство логарифма:

Метод приближенных вычислений при решении логарифмических уравнений

То есть внесем число 3 справа под знак логарифма.

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Если показатели степени равны, основания степени равны, то равны числа, получаемые в результате, то есть получим

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Делаем проверку: Метод приближенных вычислений при решении логарифмических уравнений

Получаем: Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Ответ: Метод приближенных вычислений при решении логарифмических уравнений

Степень можно выносить за знак логарифма

log a b p =p log a b (a>0,a≠1,b>0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

log a (f (x) 2 =2 log a f(x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть — только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

log a b= 1 log b a (a>0,a≠1,b>0,b≠1) (9)

Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например, lg(xy)=lgx+lgy (x>0,y>0) .

Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e — иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам: log a b= lgb lga = lnb lna (a>0,a≠1,b>0)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50. Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.

Пример 2. Вычислите: lg125/lg5. Решение. lg125/lg5 = log5125 = 3. Мы использовали формулу перехода к новому основанию (8).

a log a b =b (a>0,a≠1)
log a a=1 (a>0,a≠1)
log a 1=0 (a>0,a≠1)
log a (bc)= log a b+ log a c (a>0,a≠1,b>0,c>0)
log a b c = log a b− log a c (a>0,a≠1,b>0,c>0)
log a b p =p log a b (a>0,a≠1,b>0)
log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1)
log a b= 1 log b a (a>0,a≠1,b>0,b≠1)

Видео:Методы решения логарифмических уравненийСкачать

Методы решения логарифмических уравнений

Сложные задачи

Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

  1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
  2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

Первое уравнение выглядит вполне стандартно:

Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма ( следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но log b 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b ? С одной стороны, из основания следует b > 0, с другой — переменная b ≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

Но вот беда: второе требование ( b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить, что аргумент b отличен от единицы!

Вот давайте и проверим. Применим нашу формулу:

Метод приближенных вычислений при решении логарифмических уравнений[Подпись к рисунку]

А теперь, прежде чем идти дальше, выпишем все требования области определения, накладываемые на исходную задачу:

1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

Метод приближенных вычислений при решении логарифмических уравнений

Предлагаю ввести новую переменную:

В этом случае наша конструкция перепишется следующим образом:

Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

Как видим, оба значения переменной t нас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t , а значение x . Возвращаемся к логарифму и получаем:

Давайте приведем каждое из этих уравнений к канонической форме:

Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

Решаем пропорцию — получим:

Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

x 2 + x − 1/2 x − 1/2 − 1 = 0;

x 2 + 1/2 x − 3/2 = 0.

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

1,5 ≠ х > 0,5; 0 ≠ х > −1.

Эти требования равносильны двойному неравенству:

Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

Переходим ко второй задаче:

На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

На данное преобразование также накладываются ограничения в том случае, когда на месте b стоит функция. Но у нас b — это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:

Метод приближенных вычислений при решении логарифмических уравнений

Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

В этом случае наше уравнение будет переписано следующим образом:

Метод приближенных вычислений при решении логарифмических уравнений

Выпишем числитель и раскроем скобки:

2 ( t + 3) ( t + 2) + t ( t + 2) − 4 t ( t + 3) = 2 ( t 2 + 5 t + 6) + t 2 + 2 t − 4 t 2 − 12 t = 2 t 2 + 10 t + 12 + t 2 + 2 t − 4 t 2 − 12 t = − t 2 + 12

Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

Метод приближенных вычислений при решении логарифмических уравнений

А знаменатель — отличен от нуля:

Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t :

Метод приближенных вычислений при решении логарифмических уравнений

Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

Метод приближенных вычислений при решении логарифмических уравнений

У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

Итого мы получили четыре ограничения:

1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

С другой стороны, 1 = 5 0 , 1/25 = 5 −2 , 1/125 = 5 −3 , а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

  1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
  2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.

Видео:Решение логарифмических уравнений методом группировкиСкачать

Решение логарифмических уравнений методом группировки

Логарифм: что это? Все формулы. Простейшие уравнения и неравенства

Метод приближенных вычислений при решении логарифмических уравнений

Сейчас речь пойдет о трех страшных буквах: l o g.Существовать в нашем бытии они просто так не могут. Обязательно должен быть какой-нибудь индекс — число снизу (основание логарифма) и число после букв (аргумент логарифма).

Прежде, чем мы перейдем к тому, что такое логарифм, решим парочку подводящих примеров.

Чтобы справиться с этим примером, мы проговариваем в голове: какое число нужно дважды (т.к. корень квадратный) умножить само на себя, чтобы получить 81.

Метод приближенных вычислений при решении логарифмических уравнений

А этот пример можно решить по алгоритму (решения показательных уравнений), а можно так же провести разговор с самим собой (главное не вслух, я считаю это нормально, но кого-то вы можете напугать разговором с самим собой): сколько раз нужно число 3 умножить само на себя, чтобы получить 27. Постепенным перемножением мы дойдем до ответа.

Тогда, если дело касается логарифма:

можно сказать так: в какую степень нужно возвести 3 (число снизу — основание логарифма), чтобы получить 27 (число слева — аргумент логарифма). Не напоминает выше стоящий пример?

Метод приближенных вычислений при решении логарифмических уравнений

На самом деле в этом и заключается основная формула (определение логарифма):

Метод приближенных вычислений при решении логарифмических уравнений

Логарифм говорит нам (кому-то кричит): логарифм числа «b» по основанию «a» равняется числу «c». Тогда без логарифма это можно сформулировать так: чтобы получить число «b», требуется число «a» возвести в степень «c». Логарифм — это действие, обратное возведению в степень.

У отца log есть два родных сына: ln и lg. Так же, как сыновья отличаются возрастом (мы говорим о максимальной точности), так и эти логарифмы отличаются основанием (числовым индексом снизу).

Метод приближенных вычислений при решении логарифмических уравнений

Данные логарифмы придумали для упрощения записи. На самом деле в прикладной математики именно логарифмы по такому основанию встречаются чаще всех остальных. А мы все в глубине души народ ленивый, так что почему бы себе жизнь не упростить?

Что нужно запомнить: ln — это обычный логарифм только по основанию e ( e — это число Эйлера, e = 2,7182…, мой номер телефона, кстати, — это последние 11 цифр числа Эйлера, так что буду ждать звонка).

А lg — это обычный логарифм по основанию 10 (10ая система — это система счисления, в которой мы живем, столько пальцев на руках у среднего человека. В общем 10 — это как 9, только на 1 больше).

Как мы не можем существовать без еды, воды, интернета… Так и логарифм не представляет свое существование без ОДЗ.

Всегда, когда существует логарифм, должно быть:

«Почему это так?» — это первый вопрос, который я предоставляю тебе. Советую начать с того, что логарифм — это обратное действие от возведения в степень.

А теперь разберем теорию на практике:

В какую степень нужно возвести два (число в основании), чтобы получить шестнадцать (аргумент логарифма).

Метод приближенных вычислений при решении логарифмических уравнений

Два нужно четыре раза умножить само на себя, чтобы получить 16.

Видео:Решение логарифмических уравнений ПРИМЕР #37 Метод логарифмированияСкачать

Решение логарифмических уравнений ПРИМЕР #37 Метод логарифмирования

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log23≈1,584963 , тогда мы можем найти, например, log26 , выполнив небольшое преобразование с помощью свойств логарифма: log26=log2(2·3)=log22+log23≈ 1+1,584963=2,584963 .

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Вычислите логарифм 27 по основанию 60 , если известно, что log602=a и log605=b .

Итак, нам нужно найти log6027 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log603 .

Теперь посмотрим, как log603 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log6060=1 . С другой стороны log6060=log60(2 2 ·3·5)= log602 2 +log603+log605= 2·log602+log603+log605 . Таким образом, 2·log602+log603+log605=1 . Следовательно, log603=1−2·log602−log605=1−2·a−b .

Наконец, вычисляем исходный логарифм: log6027=3·log603= 3·(1−2·a−b)=3−6·a−3·b .

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида Метод приближенных вычислений при решении логарифмических уравнений. Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Видео:Логарифмические уравнения - Как решать методом потенцированияСкачать

Логарифмические уравнения - Как решать методом потенцирования

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

Метод приближенных вычислений при решении логарифмических уравнений(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение Метод приближенных вычислений при решении логарифмических уравненийравносильно системе

Метод приближенных вычислений при решении логарифмических уравнений(2)

Для решения уравнения (1) достаточно решить уравнение

Метод приближенных вычислений при решении логарифмических уравнений(3)

и его решения подставить в систему неравенств

Метод приближенных вычислений при решении логарифмических уравнений(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Оба значения х удовлетворяют условиям системы.

Ответ: Метод приближенных вычислений при решении логарифмических уравнений

Рассмотрим уравнения вида:

Метод приближенных вычислений при решении логарифмических уравнений(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

Метод приближенных вычислений при решении логарифмических уравнений(6)

Корнями уравнения (5) будут только те корни уравнения Метод приближенных вычислений при решении логарифмических уравнений, которые

принадлежат области определения, задаваемой условиями Метод приближенных вычислений при решении логарифмических уравнений.

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений

Всем условиям системы удовлетворяет лишь один корень. Ответ: Метод приближенных вычислений при решении логарифмических уравнений

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА Метод приближенных вычислений при решении логарифмических уравнений.

Пример 3: Найти х, если Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений Метод приближенных вычислений при решении логарифмических уравненийМетод приближенных вычислений при решении логарифмических уравнений

Оба значения х являются корнями уравнения.

Ответ: Метод приближенных вычислений при решении логарифмических уравнений

Пример 5: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Метод приближенных вычислений при решении логарифмических уравнений

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Воспользуемся формулой Метод приближенных вычислений при решении логарифмических уравненийи перейдем во всех слагаемых к логарифму по основанию 2:

Метод приближенных вычислений при решении логарифмических уравнений

Тогда данное уравнение примет вид:

Метод приближенных вычислений при решении логарифмических уравнений

Так как Метод приближенных вычислений при решении логарифмических уравнений, то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть Метод приближенных вычислений при решении логарифмических уравнений; тогда Метод приближенных вычислений при решении логарифмических уравнений

Учитывая, что Метод приближенных вычислений при решении логарифмических уравнений

Метод приближенных вычислений при решении логарифмических уравнений

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение Метод приближенных вычислений при решении логарифмических уравнений

Решение: Построим графики функций Метод приближенных вычислений при решении логарифмических уравненийи y = x

Метод приближенных вычислений при решении логарифмических уравнений

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если Метод приближенных вычислений при решении логарифмических уравнений

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

Метод приближенных вычислений при решении логарифмических уравненийистинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке Метод приближенных вычислений при решении логарифмических уравнений

На этом промежутке функция Метод приближенных вычислений при решении логарифмических уравненийубывает, а функция Метод приближенных вычислений при решении логарифмических уравненийвозрастает. И, значит, если уравнение имеет решение, то оно единственное.

Видео:11 класс, 18 урок, Логарифмические неравенстваСкачать

11 класс, 18 урок, Логарифмические неравенства

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению (f(x)=g(x)) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида (log_a f(x)=log_a g(x))

Неравенства ( begin f(x)gt 0\ g(x)gt 0 end ) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для (x) в явном виде;
2) решить уравнение (f(x)=g(x));
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения (f(x)) и (g(x)) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение (f(x)=g(x));
2) провести подстановку: полученные корни подставить в выражения для (f(x)) и (g(x)), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение (lg(2x+3)+lg(x+4)=lg(1-2x))
Найдем ОДЗ в явном виде:
( begin 2x+3gt 0\ x+4gt 0\ 1-2xgt 0 end Rightarrow begin xgt-frac32\ xgt-4\ xltfrac12 end Rightarrow -frac32lt xltfrac12Rightarrow xinleft(-frac32;frac12right) )
Решаем уравнение:
(lgleft((2x+3)(x+4)right)=lg(1-2x))
((2x+3)(x+4)=1-2x)
(2x^2+11x+12-1+2x=0)
(2x^2+13x+11=0)
((2x+11)(x+1)=0)
( left[ begin x_1=-5,5\ x_2=-1 end right. )
Корень (x_1=-5,5notin left(-frac32;frac12right),) т.е. не подходит.
Корень (x_2=-1in left(-frac32;frac12right)) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида (log_ f(x)=log_ g(x))

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение (log_(x^2-4)=log_(2-x))
Найдем ОДЗ в явном виде:
( begin x^2-4gt 0\ 2-xgt 0\ x+5gt 0\ x+5ne 1 end Rightarrow begin xlt -2cup xgt 2\ xlt 2\ xgt -5\ xne -4 end Rightarrow begin -5lt xlt -2\ xne -4 end Rightarrow xin (-5;-4)cup(-4;-2) )
Решаем уравнение:
(x^2-4=2-x)
(x^2+x-6=0)
((x+3)(x-2)=0)
( left[ begin x_1=-3\ x_2=2 — text end right. )
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение (log_(x+1)=log_(x+3))
Основания (2ne 4), и нельзя сразу написать (x+1=x+3).
Нужно привести к одному основанию, преобразовав левую часть:
(log_2(x+1)=log_(x+1)^2=log_4(x+1)^2)
Тогда исходное уравнение примет вид: (log_4(x+1)^2=log_4(x+3))
И теперь: ((x+1)^2=x+3)
(x^2+x-2=0)
((x+2)(x-1)=0)
( left[ begin x_1=-2\ x_2=1 end right. )
Что касается ОДЗ, то её нужно искать для исходного уравнения:
( begin x+1gt 0\ x+3gt 0 end Rightarrow begin xgt -1\ xgt -3 end Rightarrow xgt -1 )
Корень (x_1=-2lt -1) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) ( log_2(x+1)-log_2(x-1)=1 )
ОДЗ: ( begin x+1gt 0\ x-1gt 0 end Rightarrow begin xgt -1\ xgt 1 end Rightarrow xgt 1 )
(log_2left((x+1)(x-1)right)=log_22)
(x^2-1=2Rightarrow x^2 =3)
( left[ begin x_1=-sqrtlt 2 — text\ x_2=sqrt end right. )
Ответ: (sqrt)

б) ( 2log_5(x-1)=log_5(1,5x+1) )
ОДЗ: ( begin x-1gt 0\ 1,5x+1gt 0 end Rightarrow begin xgt 1\ xgt-frac23 end Rightarrow xgt 1 )
Преобразуем: (2log_5(x-1)=log_5(x-1)^2)
Получаем: (log_5(x-1)^2=log_5(1,5x+1))
((x-1)^2=1,5x+1)
(x^2-2x+1-1,5x-1=0Rightarrow x^2-3,5x=0Rightarrow x(x-3,5)=0)
( left[ begin x_1=0lt 1 — text\ x_2=3,5 end right. )
Ответ: 3,5

в) ( log_3(3-x)+log_3(4-x)=1+2log_3 2 )
ОДЗ: ( begin 3-xgt 0\ 4-xgt 0 end Rightarrow begin xlt 3\ xlt 4 end Rightarrow xlt 3 )
Преобразуем: (1+2log_3 2=log_3 3+log_3 2^2=log_3(3cdot 4)=log_3 12)
Получаем: (log_3left((3-x)(4-x)right)=log_3 12)
((3-x)(4-x)=12Rightarrow 12-7x+x^2=12Rightarrow x(x-7)=0)
( left[ begin x_1=0\ x_2=7gt 3 — text end right. )
Ответ: 0

г) ( log_2^2x+log_2 x^2+1=0 )
ОДЗ: (xgt 0)
(log_2x^2=2log_2x)
Получаем: (log_2^2x+2log_2x+1=0)
Замена: (t=log_2 x)
(t^2+2t+1=0Rightarrow(t+1)^2=0Rightarrow t=-1)
Возвращаемся к исходной переменной: (log_2x=-1)
(x=2^=frac12)
Ответ: (frac12)

д) ( x^=10 )
ОДЗ: (xgt 0)
Замена: (t=lg ⁡x). Тогда (x=10^t)
Подставляем:
((10^t)^t=10Rightarrow 10^=10^1Rightarrow t^2=1Rightarrow t=pm 1)
Возвращаемся к исходной переменной:
( left[ begin lg x=-1\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,1\ x_2=10 end right. )
Оба корня подходят.
Ответ:

e) ( sqrtcdot log_5(x+3)=0 )
ОДЗ: ( begin xgeq 0\ x+3gt 0 end Rightarrow begin xgeq 0\ xgt -3 end Rightarrow xgeq 0 )
( left[ begin sqrt=0\ log_5(x+3)=0 end right. Rightarrow left[ begin x=0\ x+3=5^0=1 end right. Rightarrow left[ begin x_1=0\ x_2=-2lt 0 — text end right. )
Ответ: 0

ж) ( log_2+2log_x=log_(x+1) )
ОДЗ: ( begin xgt 0\ x+1gt 0\ 5x-2gt 0\ 5x-2ne 1 end Rightarrow begin xgt 0\ xgt -1\ xgtfrac25\ xnefrac35 end Rightarrow begin xgtfrac25\ xnefrac35 end )
Преобразуем: (log_2+2log_x=log_(2x^2))
Подставляем: (log_(2x^2)=log_(x+1))
( 2x^2=x+1Rightarrow 2x^2-x-1=0Rightarrow (2x+1)(x-1)=0 Rightarrow left[ begin x_1=-frac12 — text\ x_2=1 end right. )
Ответ: 1

Пример 2*. Решите уравнения:
a) ( log_4log_2log_3(2x-1)=frac12 )
ОДЗ: ( begin 2x-1gt 0\ log_3(2x-1)gt 0\ log_2log_3(2x-1)gt 0 end Rightarrow begin xgtfrac12\ 2x-1gt 3^0\ log_3(2x-1)gt 2^0 end Rightarrow begin xgtfrac12\ xgt 1\ 2x-1gt 3^1 end Rightarrow )
( Rightarrow begin xgtfrac12\ xgt 1\ xgt 2 end Rightarrow xgt 2 )
Решаем:
(log_2log_3(2x-1)=4^=2)
(log_3(2x-1)=2^2=4)
(2x-1=3^4=81)
(2x=82)
(x=41)
Ответ: 41

б) ( log_2(9-2^x)=25^<log_5sqrt> )
ОДЗ: ( begin 9-2xgt 0\ 3-xgt 0 end Rightarrow begin 2^xlt 9\ xlt 3 end Rightarrow begin xltlog_2 9\ xlt 3 end Rightarrow xlt 3 )
Преобразуем: (25^<log_5sqrt>=25^<log_(sqrt)^2>=25^<log_(3-x)>=3-x)
Подставляем: (log_2(9-2^x)=3-x)
(9-2^x=2^)
(9-2^x-frac=0)
Замена: (t=2^xgt 0)
( 9-t-frac8t=0Rightarrow frac=0Rightarrow begin t^2-9t+8gt 0\ tne 0 end Rightarrow begin (t-1)(t-8)=0\ tne 0 end Rightarrow left[ begin t_1=1\ t_2=8 end right. )
Возвращаемся к исходной переменной:
( left[ begin 2^x=1\ 2^x=8 end right. Rightarrow left[ begin 2^x=2^0\ 2^x=2^3 end right. Rightarrow left[ begin x_1=0\ x_2=3 end right. )
По ОДЗ (xlt 3), второй корень не подходит.
Ответ: 0

в) ( lgsqrt+lgsqrt+1=lg 30 )
ОДЗ: ( begin x-5gt 0\ 2x-3gt 0 end Rightarrow begin xgt 5\ xgtfrac32 end Rightarrow xgt 5 )
Преобразуем: (lg 30-1=lg 30-lg 10=lgfrac=lg 3)
Подставляем: (lgsqrt+lgsqrt=lg 3)
(frac12lg(x-5)+frac12lg(2x-3)=lg 3 |cdot 2)
(lg(x-4)+lg(2x-3)=2lg 3)
(lgleft((x-5)(2x-3)right)=lg 3^2)
((x-5)(2x-3)=9Rightarrow 2x^2-13x+15-9=0 Rightarrow 2x^2-13x+6=0)
( (2x-1)(x-6)=0Rightarrow left[ begin x_1=frac12lt 5 — text\ x_2=6 end right. )
Ответ: 6

г) ( frac+frac+frac=0 )
ОДЗ: ( begin xgt 0\ lg xne 0\ lg 10xne 0\ lg 100xne 0 end Rightarrow begin xgt 0\ xne 1\ 10xne 1\ 100xne 1 end Rightarrow begin xgt 0\ xneleft<frac;frac;1right> end )
Преобразуем: (lg 10x=lg 10+lg x=1+lg 10)
(lg 100x=lg 100+lg x=2+lg x)
Подставляем: (frac+frac+frac=0)
Замена: (t=lg x)
begin frac1t+frac+frac=0Rightarrow frac1t+frac=-fracRightarrow frac=-fracRightarrow (1+2t)(2+t)=(1+t)\ 2_5t+2t^2=-3t-3t^2Rightarrow 5t^2+8t+2=0\ D=8^2-4cdot 5cdot 2=24, t=frac<-8pm 2sqrt>=frac<-4pm sqrt> end Возвращаемся к исходной переменной:
$$ left[ begin lg x=frac<-4- sqrt>\ lg x=frac<-4+ sqrt> end right. Rightarrow left[ begin x=10frac<-4- sqrt>\ x=10frac<-4+ sqrt> end right. $$ Оба корня подходят.
Ответ: (left<10frac<-4pmsqrt>right>)

e) ( x^<frac>=10^ )
ОДЗ: (xgt 0)
Замена: (t=lg x.) Тогда (x=10^t)
Подставляем: begin (10^t)^<frac>=10^\ frac=t+1Rightarrow t(t+7)=4(t+1)Rightarrow t^2+7t-4t-4=0\ t^2+3t-4=0Rightarrow (t+4)(t-1)=0Rightarrow left[ begin t_1=-4\ t_2=1 end right. end Возвращаемся к исходной переменной:
$$ left[ begin lg x=-4\ lg x=1 end right. Rightarrow left[ begin x=10^\ x=10 end right. Rightarrow left[ begin x_1=0,0001\ x_2=10 end right. $$ Оба корня подходят.
Ответ: (left)

ж) ( 4^=(2x^2+2x+5)^ )
ОДЗ: ( begin 1-xgt 0\ 2x^2+2x+5gt 0 end Rightarrow begin xlt 1\ Dlt 0, xinmathbb end Rightarrow xlt 1 )
По условию: begin log_3(1-x)=log_4left((2x^2+2x+5)^right)\ log_3(1-x)=log_32cdotlog_4(2x^2+2x+5) end Перейдем к другому основанию: $$ frac=fraccdotfrac |cdot lg 3 $$ (frac=frac=frac=frac12) begin lg(1-x)=frac12cdotlg(2x^2+2x+5) |cdot 2\ 2lg(1-x)=lg(2x^2+2x+5)\ lg(1-x)^2=lg(2x^2+2x+5)\ (1-x)^2=2x^2+2x+5\ 1-2x+x^2=2x^2+2x+5\ x^2+4x+4=0\ (x+2)^2=0\ x=-2 end Ответ: -2

Пример 3. Решите систему уравнений:
a) ( begin lg x+lg y=lg 2\ x^2+y^2=5 end )
ОДЗ: ( begin xgt 0\ ygt 0 end )
Из первого уравнения: (lg(xy)=lg 2Rightarrow xy=2)
Получаем: ( begin xy=2\ x^2+y^2=5 end Rightarrow begin y=frac2x\ x^2+left(frac2xright)^2-5=0 end )
Решаем биквадратное уравнение: begin x^2+frac-5=0Rightarrowfrac=0Rightarrow begin x^4-5x^2+4=0\ xne 0 end \ (x^2-4)(x^2-1)=0Rightarrow left[ begin x^2=4\ x^2=1 end right. Rightarrow left[ begin x=pm 2\ x=pm 1 end right. end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: ( left[ begin begin x=1\ y=frac2x=2 end \ begin x=2\ y=frac22=1 end end right. )
Ответ: (left)

б) ( begin x^=27\ x^=frac13 end )
ОДЗ: (xgt 0, xne 1)
Логарифмируем: ( begin y+1=log_x27=log_x3^3=3log_x3\ 2y-5=log_xfrac13=log_x3^=-log_x3 end )
Замена: (z=log_x3) begin begin y+1=3z\ 2y-5=-z |cdot 3 end Rightarrow begin y+1=3z\ 6y-15=-3z end Rightarrow begin 7y-14=0\ z=5-2y end Rightarrow begin y=2\ z=1 end end Возвращаемся к исходной переменной: $$ begin y=2\ log_x3=1 end Rightarrow begin x^1=3\ y=2 end Rightarrow begin x=3\ y=2 end $$
Ответ: (3;2)

в*) ( begin 3(log_y x-log_x y)=8\ xy=16 end )
ОДЗ: ( begin xgt 0, xne 1\ ygt 0, yne 1 end )
Сделаем замену (t=log_x y). Тогда (log_y x=frac=frac1t)
Подставим в первое уравнение и решим его: begin 3left(frac1t-tright)=8Rightarrowfrac=frac83Rightarrow begin 3(1-t^2)=8t\ tne 0 end\ 3t^2+8t-3=0Rightarrow (3t-1)(t+3)=0Rightarrow left[ begin t_1=frac13\ t_2=-3 end right. end Прологарифмируем второе уравнение по (x): $$ log_x(xy)=log_x16Rightarrow 1+log_x y=log_x16Rightarrow 1+t=log_x 16 $$ Получаем: begin left[ begin begin t=frac13\ log_x16=1+t=frac43 end \ begin t=-3\ log_x16=1+t=-2 end end right. Rightarrow left[ begin begin t=frac13\ x^=16 end \ begin t=-3\ x^=16 end end right. Rightarrow left[ begin begin t=frac13\ x=(2^4)^=2^3=8 end \ begin t=-3\ x=(16)^=frac14 end end right. end Возвращаемся к исходной переменной: begin left[ begin begin x=8\ log_x y=frac13 end \ begin x=frac14\ log_x y=-3 end end right. Rightarrow left[ begin begin x=8\ y=8^=2 end \ begin x=frac14\ y=left(frac14right)^=64 end end right. end
Ответ: (left)

г*) ( begin (x+y)cdot 3^=frac\ 3log_5(x+y)=x-y end )
ОДЗ: (x+ygt 0)
Прологарифмируем первое уравнение по 3: begin log_3left((x+y)cdot 3^right)=log_3frac\ log_3(x+y)+(y-x)=log_3frac\ log_3(x+y)-log_3frac=x-y end Получаем:(x-y=3log_5(x+y)=log_3(x+y)-log_3frac)
Решим последнее уравнение относительно (t=x+y) begin 3log_5 t=log_3 t-log_3frac\ 3cdotfrac-log_3t=-log_3frac\ log_3tcdotleft(frac-1right)=-log_3frac\ log_3t=-frac<log_3frac><frac-1>=-frac=log_35\ t=5 end Тогда: (x-y=3log_5t=3log_55=3)
Получаем систему линейных уравнений: begin begin x+y=5\ x-y=3 end Rightarrow begin 2x=5+3\ 2y=5-3 end Rightarrow begin x=4\ y=1 end end Требование ОДЗ (x+y=4+1gt 0) выполняется.
Ответ: (4;1)

🔥 Видео

Решение логарифмических уравнений ПРИМЕР #8 Метод потенцированияСкачать

Решение логарифмических уравнений ПРИМЕР #8 Метод потенцирования

Решение логарифмических уравнений ПРИМЕР #11 Раскладывать на множители или делитьСкачать

Решение логарифмических уравнений ПРИМЕР #11 Раскладывать на множители или делить

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Математика. Методы решения логарифмических уравнений (1-2)Скачать

Математика. Методы решения логарифмических уравнений (1-2)
Поделиться или сохранить к себе: