Метод пикара для решения дифференциального уравнения

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Метод последовательных приближений решения дифференциального уравнения

Пусть требуется найти решение дифференциального уравнения

Будем предполагать, что в некотором прямоугольнике для уравнения (1) выполнены условия а) и б) теоремы существования и единственности решения задачи (1)-(2).

Решение задачи (1)-(2) может быть найдено методом последовательных приближений , который состоит в следующем.

Строим последовательность функций, определяемых рекуррентными соотношениями

В качестве нулевого приближения можно взять любую функцию, непрерывную в окрестности точки , в частности — начальное значение Коши (2). Можно доказать, что при сделанных предположениях относительно уравнения (1) последовательные приближения сходятся к точному решению уравнения (1), удовлетворяющему условию (2), в некотором интервале , где

Оценка погрешности, получаемой при замене точного решения n-м приближением , даётся неравенством

где . Применяя метод последовательных приближений, следует остановиться на таком , для которого не превосходит допустимой погрешности.

Пример 1. Методом последовательных приближений найти решение уравнения , удовлетворяющее начальному условию .

Решение. Очевидно, что для данного уравнения на всей плоскости выполнены условия теоремы существования и единственности решения задачи Коши. Строим последовательность функций, определяемых соотношениями (3), приняв за нулевое приближение :

Ясно, что при . Непосредственной проверкой убеждаемся, что функция решает поставленную задачу Коши.

Пример 2. Методом последовательных приближений найти приближенное решение уравнения , удовлетворяющее начальному условию в прямоугольнике

Решение. Имеем , т. е. . За берем меньшее из чисел , т. е. . Последовательные приближения согласно (4) будут сходится в интервале . Составляем их

Абсолютная погрешность третьего приближения не превосходит величины

Замечание. Функция должна удовлетворять всем условиям теоремы существования и единственности решения задачи Коши.

Следующий пример показывает, что одной непрерывности функции недостаточно для сходимости последовательных приближений.

Пусть функция определена следующим образом:

На множестве , функция непрерывна и ограничена постоянной . Для начальной точки последовательные приближения при имеют вид:

Поэтому последовательность для каждого не имеет, предела, т. е. последовательные приближения не сходятся. Заметим также, что ни одна из сходящихся подпоследовательностей и не сходится к решению, поскольку

Если же последовательные приближения сходятся, то полученное решение может оказаться неединственным , как показывает следующий пример: .

Возьмем начальное условие ; тогда

Беря в качестве нулевого приближения функцию , будем иметь

так что все последовательные приближения равны нулю и поэтому они сходятся к функции, тождественно равной нулю. С другой стороны, функция представляет собой также решение этой задачи, существующее на полупрямой .

Видео:Метод Пикара последовательных приближений для решения дифференциальных уравненийСкачать

Метод Пикара последовательных приближений для решения дифференциальных уравнений

метод последовательных приближений

М етод последовательных приближений (или метод Пикара) является аналитическим, т. е. позволяет получить приближённое решение задачи Коши, определяемой дифференциальным уравнением (1) с начальным условием (2), в виде формулы. Возник метод в связи с доказательством теоремысуществования и единственности решения задачи Коши (гл. 1).

Пусть в условиях данной теоремы требуется найти решение уравнения (1) с начальным условием (2). Проинтегрируем обе части уравнения (1) от х0 доx:

Метод пикара для решения дифференциального уравнения, откуда

у(х) = у0 + Метод пикара для решения дифференциального уравнения. (7)

Очевидно, что решение интегрального уравнения (7) будет удовлетворять уравнению (1) и начальному условию (2). Действительно, при х =х0 получим

у(х0) = у0 + Метод пикара для решения дифференциального уравнения= у0.

Применим к интегральному уравнению (7) метод последовательных приближений. Заменим в равенстве (7) неизвестную функцию у данным значением у0, получим первое приближение

у1(х) = у0 + Метод пикара для решения дифференциального уравнения.

Заметим, что интеграл в правой части содержит только одну переменную х, поэтому аналитическое выражение первого приближения у1(х) будет являться функцией, зависящей
от х.Заменим теперь в равенстве (7) неизвестную функцию у найденным значением у1(х), получим второе приближение

у2(х) = у0 + Метод пикара для решения дифференциального уравнения

и т. д. В общем случае итерационная формула имеет вид

уn(х) = у0 + Метод пикара для решения дифференциального уравнения( n =1, 2, . ). (8)

Применив неоднократно формулу (8), получим последовательность функций

Можно доказать [1, 2, 3], что эта последовательность сходится и

Метод пикара для решения дифференциального уравнения= у(х),

т.е. предел последовательности является решением интегрального уравнения (7), а следова­тельно, и дифференциального уравнения (1) с начальным условием (2). Это означает, что k-й член последовательности (9) является приближением к точному решению уравнения (1)
с определённой степенью точности.

Погрешность k-го приближения можно оценить формулой

Метод пикара для решения дифференциального уравнения, (10)

где L — постоянная Липшица; М — верхняя грань модуля функции f, т.е. Метод пикара для решения дифференциального уравнения;

величина d для определения окрестности Метод пикара для решения дифференциального уравнениявычисляется по формуле Метод пикара для решения дифференциального уравнения, числаа и b— из неравен­ства Липшица (гл. 1).

Пример 1. Найти три последовательных приближения решения дифференциального урав­нения у’ = x + y 2 ,удовлетворяющего начальному условию у(0) = 1.

Решение.В качестве начального приближения возьмём

первое приближение у1(х) = у0 + Метод пикара для решения дифференциального уравнения= 1+ Метод пикара для решения дифференциального уравнения,

второе приближение у2(х) = у0 + Метод пикара для решения дифференциального уравнения= 1+ Метод пикара для решения дифференциального уравнения,

третье приближение у3(х) = у0 + Метод пикара для решения дифференциального уравнения= 1+ Метод пикара для решения дифференциального уравнения.

Вычисления интегралов и построение графиков полученных функций у1(х), у2(х), у3(х) проведём в системе MathCAD. Результаты решения представлены на рис. 14.

Оценим погрешность третьего приближения.

Для определения области G, заданной неравенствами (6), примема = 1, b = 2. Получим

G: – 1 Метод пикара для решения дифференциального уравнениях Метод пикара для решения дифференциального уравнения1,–1 Метод пикара для решения дифференциального уравненияy Метод пикара для решения дифференциального уравнения3.

В прямоугольнике G функция

определена и непрерывна, причём: Метод пикара для решения дифференциального уравнения,

Метод пикара для решения дифференциального уравнения,

Метод пикара для решения дифференциального уравнения,

Метод пикара для решения дифференциального уравнения= Метод пикара для решения дифференциального уравнения.

По формуле (10) получим

Метод пикара для решения дифференциального уравнения.

Метод пикара для решения дифференциального уравнения

Рис. 14

Заметим, что в программе MathCAD для вычисления интегралов с переменным верхним пределом интегрирования, необходимо выполнить следующие действия:

1) записать интеграл и выделить его в рамку;

2) выбрать команду Evaluate (Вычислить) из меню опции Simbolic (Символика) главного меню.

Существует и другой способ вычисления несобственных интегралов в программе MathCAD, по которому следует:

1) записать интеграл и выделить его в рамку;

2) выбрать команду Simplify (Упростить) из меню опции Simbolic (Символика) главного меню.

Пример 2. Найти пять последовательных приближений решения дифференциального уравнения

удовлетворяющего начальному условию у(0) = 0.

Сравнить полученные приближения с точ­ным решением.

Решение.В качестве начального приближения возьмём

Решение данного уравнения, проведённое в системе MathCAD, показано на рис. 15.

Метод пикара для решения дифференциального уравнения

Рис. 15

МетодЭйлера

М етод Эйлера относится одновременно к численным и к графи­ческим методам решения дифференциальных уравнений.

Суть метода заключается в том, что искомую интегральную кривую y = y(x) заменяют ломаной M0M1M2 . звенья которой являются касательными к интегральным кривым (рис. 16).

Метод пикара для решения дифференциального уравненияМетод пикара для решения дифференциального уравнения

Рис. 16

Пусть требуется решить задачу Коши, т.е. найти решение дифференциального уравнения (1) с начальным условием (2) в виде функ­ции y = y(x). Выбрав шаг h, построим, начиная
с точки х0, систему равноотстоящих точек:

Вместо искомой интегральной кривойy = y(x) на отрезке [х0, х1]рассмотрим отрезок касательной L1 к ней в точке М0 (х0, y0). Уравнение касательной L1, в силу (1), имеет вид

При х = х1 из уравнения касательной L1 получим

откуда видим, что приращение функции на первом шаге имеет вид

Метод пикара для решения дифференциального уравненияу0 = hf(х0, y0).

Аналогично, проводя касательную L2 к некоторой интеграль­ной кривой семейства в точке М1(х1, y1), получим

Метод пикара для решения дифференциального уравненияу1= hf(х1, y1).

Таким образом, значения искомой функции y(x) могут быть определены по формулам:

yi+1 =yi + Метод пикара для решения дифференциального уравненияу i, Метод пикара для решения дифференциального уравненияу i = hf(х i, yi), (11)

где i= 0,1,2, . , которые называются вычислительными формулами метода Эйлера.

При этом искомую интегральную кривую y = y(x), проходящую через точку М0 (х0, y0), приближённо заменяем так называемой ломаной ЭйлераM0M1M2 . звенья которой MiMi+1 прямолинейны между прямыми x = xi, x = xi+1 и имеют подъём

Метод пикара для решения дифференциального уравнения.

Метод Эйлера является простейшим численным методом, удоб­ным в применении, однако он имеет ряд существенных недостатков. Основной из них — малая точность. Она равна порядку h 2 , причём с каждым шагом погрешность возрастает, т.е. происходит систематиче­ское накопление ошибок. Поэтому на практике часто используют способ двойного счёта — с шагом hи с шагом h/2. Совпадение десятич­ных знаков в полученных двумя способами результатах даёт есте­ственные основания считать их верными.

Пример.

1. Найти методом Эйлера численное решение диффе­ренциального уравнения
у’ = x 3 + y,удовлетворяющее начальному условию у (0) = 1, на отрезке [0, 1] с шагом h = 0,1.

2. Найти точное решение уравнения у’ = x 3 + y и сравнить его с приближённым на отрезке [0, 1].

1. Для данного уравнения вычислительные формулы (11) имеют вид:

yi+1 =yi + Метод пикара для решения дифференциального уравненияу i, Метод пикара для решения дифференциального уравненияу i = 0,1(х i 3 + yi),

Учитывая, что погрешность метода имеет порядок h 2 = 0,01, достаточно в промежуточных результатах брать три цифры после запятой, а во всех yiсохранять только две цифры.

Результаты вычислений оформим в виде таблицы.

iх iyi Метод пикара для решения дифференциального уравненияyi = hf( х i , yi) = 0,1( х i 3 + yi)
0010,1
10,11,10,110
20,21,210,122
30,31,330,136
40,41,471,634
50,51,620,175
60,61,790,201
70,71,990,233
80,82,220,273
90,92,490,322
1012,82

2. Данное уравнение у’ = x 3 + y является линейным дифференциальным уравнением первого порядка. Решим его методом Бернулли.

Полагая y = uv, имеем

Метод пикара для решения дифференциального уравнения= 0.

Сгруппируем члены, содержащие uв первой степени, получим

Метод пикара для решения дифференциального уравнения= 0.

Полагаем Метод пикара для решения дифференциального уравнения= 0, откуда Метод пикара для решения дифференциального уравнения. Интегрируя, находим Метод пикара для решения дифференциального уравнения, или Метод пикара для решения дифференциального уравнения(постоянную интегрирования не вводим, так как достаточно найти какое-либо частное решение этого вспомогательного уравнения).

Для нахождения uимеем уравнение

Метод пикара для решения дифференциального уравнения,

Метод пикара для решения дифференциального уравнения.

Разделим переменные, получим Метод пикара для решения дифференциального уравнения, откуда

Метод пикара для решения дифференциального уравнения.

Интегрируем по частям три раза:

Метод пикара для решения дифференциального уравненияМетод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения.

Таким образом, общее решение данного уравнения

y = uv = Метод пикара для решения дифференциального уравнения,

или y = Метод пикара для решения дифференциального уравнения.

Используя начальное условие у (0) = 1, получим 1 = ‑ 6 + С, откуда С = 7. Следовательно, искомое частное (точное) решение имеет вид

у = Метод пикара для решения дифференциального уравнения.

Вычислим значения полученного точного решения на отрезке [0, 1] с шагом h = 0,1. Результаты округлим до 0,01 и запишем в таблицу.

iх iПриближённые значения yi Точные значения y (х i )
0011
10,11,11,11
20,21,211,22
30,31,331,35
40,41,471,5
50,51,621,67
60,61,791,86
70,71,992,08
80,82,222,35
90,92,492,66
1012,823,03

Сравнение приближённого (численного) решения данного дифференциального уравнения с точным на промежутке [0, 1] проведём с помощью системы MathCAD.

Результаты сравнения, а также численное решение данного уравнения, проведённое методом Эйлера в системе MathCAD, представлены на рис. 17.

Метод пикара для решения дифференциального уравнения

Рис. 17

МодификацииметодаЭйлера

Существуют различные уточнения метода Эйлера, повышающие его точность. Цель модификаций — более точно определить направление перехода из точки (х i, yi) в точку (х i +1, yi +1). Так, метод Эйлера-Коши предлагает вычислять значения искомой функции y(x) по фор­мулам:

Метод пикара для решения дифференциального уравнения= yi + Ду i, Ду i = hf(х i, yi),

yi+1 = yi + h Метод пикара для решения дифференциального уравнения,i= 0,1,2, . .

Геометрически это означает, что мы определяем направление интегральной кривой в исходной точке (х i, yi) и во вспомогательной точке (х i +1, Метод пикара для решения дифференциального уравнения). В качестве окончательного берём среднее этих направлений.

Другой модификацией метода Эйлера является усовершенствованный метод ломаных, при котором сначала вычисляют промежуточные значения:

Метод пикара для решения дифференциального уравнения, Метод пикара для решения дифференциального уравнения

и находят значение направления поля интегральных кривых в средней точке ( Метод пикара для решения дифференциального уравнения, Метод пикара для решения дифференциального уравнения), т.е. Метод пикара для решения дифференциального уравнения= f( Метод пикара для решения дифференциального уравнения, Метод пикара для решения дифференциального уравнения), а затем полагают

yi+1 = yi + h Метод пикара для решения дифференциального уравнения.

Метод Эйлера и его модификации являются простейшими пред­ставителями конечно-разностных методов (шаговых методов) для приближённого решения задачи Коши.

Поскольку описанные методы предполагают повторяющиеся вычисления на каждом шаге, то они легко программируются и могут быть реализованы на компьютере.

На рис. 18 и 19 показаны решения дифференциального уравнения у’ = x 3 + y,удовлетворяющего начальному условию у(0) = 1, полученные модифицированными методами Эйлера (методом Эйлера-Коши и усовершенствованным методом ломаных) с помощью системы MathCAD.

Метод пикара для решения дифференциального уравнения

Рис. 18

Метод пикара для решения дифференциального уравнения

Рис. 19

Метод Рунге-Кутта

Рассмотренный выше метод Эйлера относится к семейству методов Рунге-Кутта и является их простейшим частным случаем (методом первого порядка точности). Наиболее известным из методов Рунге-Кутта является классический четырёхэтапный метод четвёртого порядка точности. Его расчётные формулы для решения задачи Коши, определённой уравнениями (1) и (2), имеют вид:

yi+1 =yi + Метод пикара для решения дифференциального уравненияу i; Метод пикара для решения дифференциального уравненияу i= Метод пикара для решения дифференциального уравнения( k1 (i) + 2k2 (i) + 2k3 (i) + k4 (i) ), (12)

k2 (i) = h f (х i + Метод пикара для решения дифференциального уравнения,yi + Метод пикара для решения дифференциального уравнения);

k3 (i) = h f (х i + Метод пикара для решения дифференциального уравнения, yi + Метод пикара для решения дифференциального уравнения);

Погрешность метода на каждом шаге является величиной порядка h 5 .

Геометрический смысл использования метода Рунге-Кутта с вычислительными формулами (12) состоит в следующем (рис. 20).

Метод пикара для решения дифференциального уравнения

Рис. 20

Из начальной точки М0(х0, y0) сдвигаются в направлении, определяемом углом Метод пикара для решения дифференциального уравнения1, для которого tg Метод пикара для решения дифференциального уравнения1= f (х0, y0). Идут в этом направлении на полшага, т.е. до вертикальной прямой
х = х0 + Метод пикара для решения дифференциального уравнения. На этом направлении выбирается точка Р1с координатами

Метод пикара для решения дифференциального уравнения

Затем из точки М0(х0, y0)сдвигаются в направлении, определяемом углом Метод пикара для решения дифференциального уравнения2, для которого tg Метод пикара для решения дифференциального уравнения2 = f (х0 + Метод пикара для решения дифференциального уравнения,y0 + Метод пикара для решения дифференциального уравнения), и на этом направлении выбирается точка Р2с координатами

Метод пикара для решения дифференциального уравнения.

Далее из точки М0(х0, y0) сдвигаются в направлении, определяемом углом Метод пикара для решения дифференциального уравнения3, для которого tg Метод пикара для решения дифференциального уравнения3 = f Метод пикара для решения дифференциального уравнения. На этом направлении выбирается точка Р3с координатами

(х0 + h, y0 + k3 (0) ). Этим задаётся ещё одно направление, определяемое углом Метод пикара для решения дифференциального уравнения4, для которого tg Метод пикара для решения дифференциального уравнения4 = = f(х0 + h, y0 + k3 (0) ). Четыре полученных направления усредняются в соответствии с формулой

Метод пикара для решения дифференциального уравнения= Метод пикара для решения дифференциального уравнения(k1 (0) +2k2 (0) + 2k3 (0) + k4 (0) ).

На этом окончательном направлении и выбирается очередная точка М1с координатами (х1, y1) = (х0+ h, y0 + Метод пикара для решения дифференциального уравнения).

Теперь, уже исходя из точки М1, все построения с помощью усреднений направлений повторяют сначала. Идут в новом усреднённом направлении до вертикальной прямой х = х2, получают точку М2(х2, y2) и т.д.

Эффективная оценка метода Рунге-Кутта затруднительна [2, 4]. Поэтому для определения правильности выбора шага h на практике обычно на каждом этапе из двух шагов применяют двойной пересчёт, а именно: исходя из текущего верного значения y(х i) вычисляют величину y(х i+ 2h) двумя способами: один раз с шагом h, другой раз — с двойным шагом 2h .

Если расхождение полученных значений не превышает допустимой погрешности, то шаг hдля данного этапа выбран правильно и полученное с его помощью значение можно принять за y (х i+ 2h). В противном случае шаг уменьшают в два раза.

На практике при вычислениях по формулам (15) обычно пользуются схемой, приведённой в таблице.

ixYk = hf (х, y ) Метод пикара для решения дифференциального уравненияу
0х 0 х0 + Метод пикара для решения дифференциального уравнениях0 + Метод пикара для решения дифференциального уравнениях0 + hy 0 y0 + Метод пикара для решения дифференциального уравненияy0 + Метод пикара для решения дифференциального уравненияy0 + k3 (0)k1 (0) k2 (0) k3 (0) k4 (0)k1 (0) 2k2 (0) 2k3 (0) k4 (0)
Метод пикара для решения дифференциального уравнения
1х1y1. . .. . .

Пример. Найти методом Рунге-Кутта решение дифференциального уравнения у’ = x 3 + y,удовлетворяющего начальному условию у(0) = 1, на отрезке [0, 1] с шагом h = 0,1.

Решение.Учитывая, что погрешность метода имеет порядок h 5 = 0,00001, в промежуточных результатах следует брать пять цифр после запятой, а во всех yiсохранять только четыре цифры. Результаты вычислений оформим в виде таблицы.

iхyk = 0,1(х 3 + y ) Метод пикара для решения дифференциального уравненияy
00 0,05 0,05 0,11 1,05 1,0525 1,10530,1 1,10501 1,10526 1,110630,1 0,21003 0,21053 0,11063
0,1052
10,1 0,15 0,15 0,21,1052 1,1604 1,1634 1,22190,11062 0,11637 0,11668 0,111360,11062 0,23278 0,21121 0,11136
0,10556
20,2 0,25 0,25 0,31,2218 1,2717 1,2752 1,33990,12188 0,12874 0,12908 0,136690,12188 0,25747 0,25816 0,13669
0,12903
30,3 0,35 0,35 0,41,3520 1,4081 1,4124 1,48530,13668 0,1451 0,14552 0,154930,13668 0,2902 0,29105 0,15493
0,14548
40,4 0,45 0,45 0,51,4988 1,5628 1,568 1,65120,15493 0,16539 0,16591 0,177620,15493 0,33078 0,33182 0,17762
0,16586
50,5 0,55 0,55 0,61,6661 1,74 1,7465 1,84250,17762 0,19064 0,19132 0,205850,17762 0,38128 0,38258 0,20585
0,19122
60,6 0,65 0,65 0,71,8588 1,9618 1,9699 2,08260,20584 0,22199 0,2228 0,240820,20584 0,44399 0,4456 0,24082
0,22271
70,7 0,75 0,75 0,82,0833 2,1855 2,1955 2,32680,24081 0,26074 0,26173 0,283880,24081 0,52148 0,52347 0,28388
0,26161
80,8 0,85 0,85 0,92,3468 2,4898 2,5021 2,65850,28589 0,3104 0,31162 0,338750,28589 0,62079 0,62324 0,33875
0,31145
90,9 0,95 0,95 12,6582 2,8545 2,8695 3,05660,34129 0,37119 0,37269 0,405660,34129 0,74238 0,74537 0,40566
0,37245
1013,0280

Соответствующее решение данного дифференциального уравнения, полученное методом Рунге-Кутта в системе MathCAD, представлено на рис. 21.

Метод пикара для решения дифференциального уравнения

Рис. 21

Лабораторная работа

«Численные методы решения задачи Коши
для обыкновенных дифференциальных уравнений»

Задание 1.

1. Для заданного дифференциального уравнения первого порядка у’ = f(x , y) c начальным условием у (a) = c найти приближённое решение в виде многочлена пятой степени.

2. Найти численное решение данного дифференциального уравнения на отрезке [a, b] с шагом интегрирования h, округляя результат до 0,001.

3. Найти точное решение заданного дифференциального уравнения у’ = f (x, y) и сравнить его с приближённым на отрезке [a, b]. Построить графики полученных решений.

Исходные данные для 15-ти вариантов содержатся в таблице.

Вариантf ( x , y )abсh
1 Метод пикара для решения дифференциального уравнения0100,1
2 Метод пикара для решения дифференциального уравнения0110,1
3 Метод пикара для решения дифференциального уравнения0200,1
4 Метод пикара для решения дифференциального уравненияp2p0p/10
5 Метод пикара для решения дифференциального уравнения12 Метод пикара для решения дифференциального уравнения0,1
6 Метод пикара для решения дифференциального уравнения13 Метод пикара для решения дифференциального уравнения0,2
74 + Метод пикара для решения дифференциального уравнения1220,1
8 Метод пикара для решения дифференциального уравнения1200,2
9 Метод пикара для решения дифференциального уравнения0200,1
10 Метод пикара для решения дифференциального уравнения0210,2
11 Метод пикара для решения дифференциального уравнения1200,2
12Метод пикара для решения дифференциального уравнения01p/40,1
13Метод пикара для решения дифференциального уравнения Метод пикара для решения дифференциального уравнения Метод пикара для решения дифференциального уравненияе0,1
14 Метод пикара для решения дифференциального уравнения0110,1
15 Метод пикара для решения дифференциального уравнения Метод пикара для решения дифференциального уравнения Метод пикара для решения дифференциального уравнения00,3

Указания к выполнению задания 1

1. Для того, чтобы получить приближённое решение заданного дифференциального уравнения в виде многочлена пятой степени, используйте формулу (3) при k = 0, 1, . 5.

2. При выборе метода для вычисления точного решения учитывайте то, что дифференциальные уравнения вариантов 1- 4 являются линейными дифференциальными уравнениями, уравнение 5-го варианта — уравнение Бернулли, уравнения 6-8-х вариантов — однородные дифференциальные уравнения, а уравнения 9-15-х го вариантов — дифференциальные уравнения с разделяющимися переменными.

3. Для сравнения точного и приближённого решений заданного дифференциального уравнения сначала составьте таблицы их значений на отрезке [a , b], затем постройте на этом же отрезке графики полученных решений.

Задание 2. Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка у’ = f(x , y) на отрезке [a , b]при заданном начальном условии у(a) = c и шаге интегрирования h:

1) методом Эйлера с шагом 2h и с шагомh;

2) модифицированным методом Эйлера (методом Эйлера — Коши или усовершенствованным методом ломаных);

3) методом Рунге-Кутта с шагом 2h и с шагомh.

Результаты округлить до 0,0001. Сравнить полученные разными методами решения. Построить графики полученных решений.

Видео:5. Метод последовательных приближенийСкачать

5. Метод последовательных приближений

Метод пикара для решения дифференциального уравнения

4. Численные методы решения дифференциальных уравнений.

Численные методы решения ОДУ.

Если неизвестная функция, входящая в д.у. зависит от одной независимой переменной, то такое д.у. обычное.

Порядок д.у. – наивысший порядок производной, входящей в это уравнение.

Д.у. n -ого порядка – уравнение вида Метод пикара для решения дифференциального уравнения, где x – независимая переменная, y – неизвестная функция.

Решение или интеграл д.у. — всякая дифференцируемая n -раз функция y = f ( x ), обращающая д.у. n -ого порядка в тождество.

График решения – интегральная кривая.

Общее решения д.у. y = f ( x ) – Метод пикара для решения дифференциального уравнения, c – порядок уравнения.

Частное решение д.у. – такое решение, которое может быть получено из общего при определенных числовых значений постоянного интегрирования, входящих в общее решение.

Задача Коши (начальная задача) – нахождение частного решения д.у. n -ого порядка, удовлетворяющего n начальным условиям.

при n =1 начальное условие Метод пикара для решения дифференциального уравнения

Теорема Коши: если f ( x , y ) непрерывна в замкнутой области D ( x , y )и имеет ограниченную частную производную по y

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

то для любого x , y из D существует единственное решение y ( x ) ОДУ первого порядка.

Метод последовательных приближений Пикара.

Метод позволяет получить приближенное решение д.у. y ’= f ( x , y ).

Рассмотрим случай с начальным условием Метод пикара для решения дифференциального уравнения

Проинтегрируем обе части от x 0 до x (3)

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

при Метод пикара для решения дифференциального уравненияполучаем Метод пикара для решения дифференциального уравнения

Суть метода Пикара – использование интегрального уравнения (3) для построения интерактивного алгоритма решения задачи Коши.

Метод пикара для решения дифференциального уравнения

Численные решения ОДУ. Методы Эйлера.

Универсальный численный метод решения д.у. – метод конечных разностей. Сущность – замена области непрерывного измерения аргумента дискретным множеством точек (сеткой или сеточной области с постоянным или переменным шагом h ).

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

Много общего с методом Эйлера – последовательные значения y 1 искомой функции y определяются по формуле Метод пикара для решения дифференциального уравнения

Если разложить функцию в ряд Тейлора и ограничится членами до h 4 , то приращение функции (2):

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

где производные y ’( x ), y ’’( x ), y ’’( x ), y ’ v ( x ) определятся последовательным дифференцированием из уравнения y ’= f ( x )

Вместо непосредственных вычислений по формуле (2) в методе Рунге-Кутта определяются 4 числа:

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

Метод пикара для решения дифференциального уравнения

Многошаговые методы. Решение в текущем узле зависит от данных в нескольких предыдущих узлах.

Вычисление таблицы приближённых значений решения в начальных точках.

Пусть требуется найти приближенное решение дифференциального уравнения y‘ = f(x,y) , удовлетворяющее начальному условию y(x0) = y0 . Численное решение задачи состоит в построении приближенного значения y1 решения уравнения y(x) в точке x1 = x0 + h . Методами Адамса называют группу многошаговых методов, в которых приближенное решение yn + 1 = y(xn + 1) в точке xn + 1 = x0 + h(n + 1) вычисляется по формуле, использующей полином P(x) наименьшей степени, интерполирующий правую часть f(x,y) по значениям fn,fn − 1. fn k + 1,fr = f(xr,yr) . Методы, в которых P(x) = Pkn(x) называют k -шаговыми явными методами Адамса — Башфорта, а методы, в которых P(x) = Pk + 1n + 1 — (k + 1) -шаговыми неявными методами Адамса — Мултона. Методы Адамса k -го порядка требуют предварительного вычисления решения в k начальных точках. Часто для вычисления дополнительных начальных значений используется 4-стадийный метод Рунге — Кутта 4-го порядка точности.

🎬 Видео

Теорема Пикара. Часть 3. Единственность и пример.Скачать

Теорема Пикара. Часть 3. Единственность и пример.

Метод Пикара. (Дифференциальные уравнения - урок 20)Скачать

Метод Пикара. (Дифференциальные уравнения - урок 20)

Практика 9 Теорема ПикараСкачать

Практика 9  Теорема Пикара

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Теорема Пикара для задачи КошиСкачать

Теорема Пикара для задачи Коши

Асташова И. В. - Дифференциальные уравнения I - Теорема существования и единственности Пикара - 1Скачать

Асташова И. В. - Дифференциальные уравнения I - Теорема существования и единственности Пикара - 1

9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать

9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.

Теорема Пикара. Часть 1.Скачать

Теорема Пикара. Часть 1.

Дифференциальные уравнения. Теоретический билет 3/6. Теорема ПикараСкачать

Дифференциальные уравнения. Теоретический билет 3/6. Теорема Пикара

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

Частное решение ДУ, с помощью рядаСкачать

Частное решение ДУ, с помощью ряда

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.
Поделиться или сохранить к себе: