Решение уравнений методом оценки основано на сравнении области значений функций, стоящих в левой и правой части уравнения.
Если в уравнении
то равенство возможно тогда и только тогда, когда и f(x) и g(x) одновременно равны a:
При этом, если максимальное значение функции, стоящей в одной части уравнения, равно минимальному значению функции, стоящему в другой части уравнения, и эти значения достигаются для обеих функций при x=x0, то xo — корень уравнения.
Графически это можно проиллюстрировать так:
Если максимальное значение функции, стоящей в одной части уравнения, равно минимальному значению функции, стоящему в другой части уравнения, но эти значения достигаются при разных x0, то уравнение не имеет корней:
Получив систему уравнений
достаточно решить одно из уравнений (которое проще), а затем проверить, являются ли найденные корни корнями другого уравнения.
Чаще всего при решении уравнений методом оценки правой и левой части используют следующие соображения:
причём равенство достигается при
4) Квадратичная функция в вершине параболы (x0; y0)
при a>0 принимает своё наименьшее значение:
при отрицательном коэффициенте a при x² — наибольшее значение:
где n — натуральное число.
Примеры решения уравнений методом оценки левой и правой части.
— квадратичная функция. График — парабола ветвями вверх. Наименьшее значение принимает в вершине
С другой стороны
Следовательно, исходное уравнение равносильно системе уравнений
Корень второго уравнения:
x=2. Проверяем, является ли 2 корнем первого уравнения:
— верно. Следовательно, x=2 — единственный корень.
Так как x⁴≥0, то 25+ x⁴≥25, а значит,
С другой стороны,
Следовательно, исходное уравнение равносильно системе уравнений
Решаем первое уравнение
Проверяем, является ли x=0 корнем второго уравнения:
— верно. Значит, x=0 — корень данного уравнения.
Так как сумма взаимно-обратных положительных чисел не меньше двух,
Так как сумма положительных взаимно-обратных чисел равна 2, если эти числа равны между собой, то
Проверяем, являются ли эти корни корнями второго уравнения.
Таким образом, исходное уравнение имеет единственный корень x= -1.
- Алгебра и начала математического анализа. 10 класс
- Метод оценки уравнений в тригонометрии
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- 💡 Видео
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №47. Методы решения тригонометрических уравнений.
Перечень вопросов, рассматриваемых в теме:
- Формирование системы знаний и умений решать тригонометрические уравнения различными методами;
- Применение метода разложения на множители при решении тригонометрических уравнений;
- Применение метода оценки при решении тригонометрических уравнений;
- Прием домножения левой и правой частей уравнения на тригонометрическую функцию при решении тригонометрических уравнений.
Глоссарий по теме
Теорема — основа метода разложения на множители
Уравнение 

Теорема — основа метода замены переменной
Уравнение 

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. под ред. Жижченко А.Б. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни – 2-е изд. – М.: Просвещение, 2011. – 368 с.: ил. – ISBN 978-5-09-025401-4, сс.327-332
Шахмейстер А.Х. Тригонометрия. М.: Издательство МЦНМО : СПб.: «Петроглиф» : «Виктория плюс», 2013. – 752 с.: илл. ISBN 978-5-4439-0050-6, сс.219-221, 245-262
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
На этом уроке мы продолжаем заниматься решением тригонометрических уравнений. И здесь мы рассмотрим такие методы как разложение на множители, метод оценки, а также продолжим решать тригонометрические уравнения методом замены переменной. Кроме того, мы узнаем, как использовать домножение правой и левой частей уравнений для получения более простого уравнения, как использовать тригонометрические формулы для решения уравнений.
Сейчас выполните несколько заданий.
Представьте в виде произведения:
Используем формулы приведения, затем формулу преобразования суммы косинусов в произведение:

(На последнем шаге мы фактически использовали формулу двойного аргумента:

Ответ: 
Воспользуемся формулой понижения степени и формулой преобразования произведения косинусов в сумму косинусов. Появившийся при этом общий множитель 

При выполнении этого задания будем использовать прием домножения о деления левой части на одно и то же тригонометрическое выражение.
Но сначала заметим, что 
Теперь запишем левую часть: 
теперь домножим и разделим это выражение на 

Теперь воспользуемся формулой синуса двойного аргумента и получим:

Учитывая, что 

То есть исходное равенство верно.
Объяснение новой темы
1. Рассмотрим метод разложения на множители
Теоретической основой метода разложения на множители является теорема:
Уравнение 

Для того чтобы применить эту теоремы, нужно исходное уравнение привести к виду 
Решить уравнение:
Перенесем правую часть уравнения в левую и преобразуем:


Ответ: 
В этом случае мы использовали метод группировки для разложения на множители тригонометрического выражения.
Часто для преобразования выражения в произведение нужно использовать тригонометрические формулы. Рассмотрим такой пример:
Решить уравнение:
Преобразуем разность синусов в произведение:
Теперь вынесем за скобку общий множитель:
И решим каждое из двух уравнений: 

Ответ: 
2. Замена переменной
Еще один метод решения тригонометрических уравнений — это метод разложения на множители. Мы уже знакомились с ним, когда решали уравнения, сводимые к квадратному или другому алгебраическому уравнению, когда решали однородные уравнения, а также знакомились с универсальной тригонометрической подстановкой. На этом уроке мы познакомимся еще с одной заменой, которая позволяет решать тригонометрические уравнения.
Рассмотрим уравнение вида:


Для его решения введем новую переменную 
Тогда 
Выразим отсюда 

Решите уравнение
Сделаем замену 

Вспомогательное уравнение имеет вид:


Вернемся к исходной переменной:

Решим каждое из этих уравнений с помощью формулы введения вспомогательного угла:


Так как 


Ответ: 
3. Теперь рассмотрим метод оценки
Часто этот метод применяют в том случае, когда уравнение включает в себя функции разного типа, например, тригонометрические и показательные, и обычные преобразования на приводят к результату. Но мы рассмотрим метод оценки при решении тригонометрических уравнений. Он основан на свойстве ограниченности тригонометрических выражений.
Решить уравнение: 
Мы знаем, что 






Вторая система ни при каких значениях k и n не имеет решений.
Первая система имеет решения при n=3m, k=2m, поэтому ее решения, а значит, и решение уравнения:
Ответ:
Рассмотрим еще один пример, в котором метод оценки применяется для решения уравнения, правая и левая части которого являются функциями разного типа.
Рассмотрим левую часть уравнения и преобразуем его:

Поэтому
Теперь рассмотрим правую часть: 
Поэтому данное уравнение решений не имеет.
Ответ: решений нет
Рассмотрим несколько задач.
Домножим уравнение на 2 и воспользуемся формулой понижения степени:
Теперь воспользуемся формулой преобразования суммы косинусов с произведение:

Теперь перенесем правую часть в левую и вынесем за скобку общий множитель:
Теперь используем формулу преобразования разности косинусов в произведение:



В этом случае достаточно оставить первые две серии решений, так как числа вида 
Таким образом, получаем ответ:
Ответ:
Используя метод вспомогательного угла, оценим выражение, стоящее в левой части уравнения.
То есть будем рассматривать левую часть уравнения как выражение вида:


Мы знаем, что 
Поэтому уравнение решений не имеет.
Ответ: решений нет.
Рассмотрим решение более сложного уравнения методом оценки.
Запишем уравнение в виде
Преобразуем левую часть:
Так как 


Так как 

Равенство возможно только при одновременном выполнении условий:






Решая эту систему, получим, что

Ответ: 

Рассмотрим еще один прием, который применяется при решении тригонометрических уравнений.
Домножение левой и правой части на тригонометрическую функцию
Рассмотрим решение уравнения:
Домножим обе части уравнения на 

Заметим, что домножая обе части уравнения на выражение с переменной, мы можем получить новые корни. Проверим те значения переменной, при которой 

Теперь с помощью формулы синуса двойного аргумента преобразуем полученное уравнение:
Теперь перенесем правую часть в левую и преобразуем по формуле преобразования разности синусов в произведение:


Учитывая, что 

Ответ: 
Примеры и разборы решений заданий тренировочного модуля
Ответ:
Решите уравнение. Найдите коэффициенты a, b, c
Ответ:
Представим левую и правую части уравнения в виде произведения. Затем перенесём всё в левую часть и разложим на множители
Ответ:
Видео:"Олимпиадная" тригонометрия. Метод оценокСкачать

Метод оценки уравнений в тригонометрии
Видео:№12 из ЕГЭ 2022 по профильной математике. Метод оценки - ИМБАСкачать

Методы решения тригонометрических уравнений.
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Сложная тригонометрия на вспомогательный угол и оценку (Ткачук)Скачать

2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Тригонометрия в ЕГЭ может быть простойСкачать

3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos 


Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
💡 Видео
Тригонометрические уравнения | Борис ТрушинСкачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

ГРОБ в №13 на ЕГЭ 2021 по математике. Метод вспомогательного угла. Тригонометрия и ФСУСкачать

Алгебра 10 класс (Урок№47 - Методы решения тригонометрических уравнений.)Скачать

А ты знаешь, когда в тригонометрических уравнениях писать пk, а когда 2пk? #математика #егэ2023 #егэСкачать

Решение тригонометрических уравнений. 10 класс.Скачать

Решаем тригонометрические уравнения через разложение на множители или деление на косинус вСкачать










































































































