Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .
- Решение онлайн
- Видеоинструкция
- Оформление Word
Правила ввода функции, заданной в явном виде
- Примеры правильного написания F(x) :
- 10•x•e 2x = 10*x*exp(2*x)
- x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
- x 3 -x 2 +3 = x^3-x^2+3
- Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .
Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
Приближенное нахождение корней уравнения складывается из двух этапов:- Отделение корней, то есть установление интервалов [αi,βi] , в которых содержится один корень уравнения.
- f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
- f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
- f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
- Уточнение приближенных корней, то есть доведение их до заданной точности.
Видео:Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать
Геометрическая интерпретация метода Ньютона (метод касательных)
Критерий завершения итерационного процесса имеет вид
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
Метод Ньютона
Единственные требования, накладываемые на функцию $f$ — что у неё есть хотя бы один корень и что она непрерывна и дифференцируема на интервале поиска.
Видео:МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать
#Описание алгоритма
Алгоритм начинает с какого-то изначального приближения $x_0$ и затем итеративно строит лучшее решение, строя касательную к графику в точке $x = x_i$ и присваивая в качестве следующего приближения $x_$ координату пересечения касательной с осью $x$. Интуиция в том, что если функция $f$ «хорошая», и $x_i$ уже достаточно близок к корню, то $x_$ будет ещё ближе.
Чтобы получить точку пересечения для $x_i$, нужно приравнять уравнение касательной к нулю:
$$ 0 = f(x_i) + (x_ — x_i) f'(x_i) $$ откуда можно выразить $$ x_ = x_i — frac $$
Метод Ньютона крайне важен в вычислительной математике: в большинстве случаев именно он используется для нахождения численных решений уравнений.
Видео:Численный метод Ньютона в ExcelСкачать
#Поиск квадратных корней
В качестве конкретного примера рассмотрим задачу нахождения квадратных корней, которую можно переформулировать как решение следующего уравнения:
$$ x = sqrt n iff x^2 = n iff f(x) = x^2 — n = 0 $$ Если в методе Ньютона подставим $f(x) = x^2 — n$, мы получим следующее правило: $$ x_ = x_i — frac = frac $$
Если нам нужно посчитать корень с некоторой заданной точностью $epsilon$, можно на каждой итерации делать соответствующую проверку:
Алгоритм успешно сходится к правильному ответу для многих функций, однако это происходит надежно и доказуемо только для определенного множества функций (например, выпуклых). Другой вопрос — как быстра эта сходимость, если она происходит.
#Скорость сходимости
Запустим метод Ньютона для поиска квадратного корня $2$, начиная с $x_0 = 1$, и посмотрим, сколько первых цифр оказались правильными после каждой итерации:
Можно заметить, что число корректных цифр примерно удваивается после каждой итерации. Такая прекрасная скорость сходимости не просто совпадение.
Чтобы оценить скорость сходимости численно, рассмотрим небольшую относительную ошибку $delta_i$ на $i$-ой итерации и посмотрим, насколько меньше станет ошибка $delta_$ на следующей итерации.
$$ |delta_i| = frac $$ В терминах относительных ошибок, мы можем выразить $x_i$ как $x cdot (1 + delta_i)$. Подставляя это выражение в формулу для следующей итерации и деля обе стороны на $x$ получаем $$ 1 + delta_ = frac (1 + delta_i + frac) = frac (1 + delta_i + 1 — delta_i + delta_i^2 + o(delta_i^2)) = 1 + frac + o(delta_i^2) $$
Здесь мы разложили $(1 + delta_i)^$ в ряд Тейлора в точке $0$, используя предположение что ошибка $d_i$ мала: так как последовательность $x_i$ сходится к $x$, то $d_i ll 1$ для достаточно больших $n$.
Наконец, выражая $delta_$, получаем
что означает, что относительная ошибка примерно возводится в квадрат и делится пополам на каждой итерации, когда мы уже близки к решению. Так как логарифм $(- log_ delta_i)$ примерно равен числу правильных значимых цифр числа $x_i$, возведение ошибки в квадрат соответствует удвоению значимых цифр ответа, что мы и наблюдали ранее.
Это свойство называется квадратичной сходимостью, и оно относится не только к нахождению квадратных корней. Оставляя формальное доказательство в качестве упражнения, можно показать, что в общем случае
$$ |delta_| = frac cdot delta_i^2 $$ что означает хотя бы квадратичную сходимость при нескольких дополнительных предположениях, а именно что $f'(x)$ не равна нулю и $f»(x)$ непрерывна.
Видео:Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать
Нелинейные системы и уравнения
В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ begin tag f_i(x_1, x_2, ldots, x_n) = 0, quad i = 1, 2, ldots n. end $$ Обозначим через ( mathbf = (x_1, x_2, ldots, x_n) ) вектор неизвестных и определим вектор-функцию ( mathbf(mathbf) = (f_1(mathbf), f_2(mathbf), ldots, f_n(mathbf)) ). Тогда система (2) записывается в виде $$ begin tag mathbf(mathbf) = 0. end $$ Частным случаем (3) является уравнение (1) (( n = 1 )). Второй пример (3) — система линейных алгебраических уравнений, когда ( mathbf (mathbf) = A mathbf — mathbf ).
Видео:Метод касательных (метод Ньютона)Скачать
Метод Ньютона
Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать
Решение нелинейных уравнений
При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению ( x^* ). В одношаговых итерационных методах новое приближение ( x_ ) определяется по предыдущему приближению ( x_k ). Говорят, что итерационный метод сходится с линейной скоростью, если ( x_ — x^* = O(x_k — x^*) ) и итерационный метод имеет квадратичную сходимость, если ( x_ — x^* = O(x_k — x^*)^2 ).
В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ begin tag x_ = x_k + frac, quad k = 0, 1, ldots, end $$
Вычисления по (4) проводятся до тех пор, пока ( f(x_k) ) не станет близким к нулю. Более точно, до тех пор, пока ( |f_(x_k)| > varepsilon ), где ( varepsilon ) — малая величина.
Простейшая реализация метода Ньютона может выглядеть следующим образом:
Чтобы найти корень уравнения ( x^2 = 9 ) необходимо реализовать функции
Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение ( tanh(x) = 0 ), точное решение которого ( x = 0 ). Если ( |x_0| leq 1.08 ), то метод сходится за шесть итераций.
Теперь зададим ( x_0 ) близким к ( 1.09 ). Возникнет переполнение
Возникнет деление на ноль, так как для ( x_7 = -126055892892.66042 ) значение ( tanh(x_7) ) при машинном округлении равно ( 1.0 ) и поэтому ( f^prime(x_7) = 1 — tanh(x_7)^2 ) становится равной нулю в знаменателе.
Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.
Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.
Учитывая выше сказанное реализуем функцию с учетом следующего:
- обрабатывать деление на ноль
- задавать максимальное число итераций в случае расходимости метода
- убрать лишний вызов функции f(x)
Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.
При реализации метода Ньютона нужно знать аналитическое выражение для производной ( f^prime(x) ). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:
Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Решение нелинейных систем
Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение ( pmb^ ), мы находим следующее приближение ( pmb^ ), аппроксимируя ( pmb(pmb^) ) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу ( pmb(pmb^) = 0 ) линейной $$ begin tag pmb(pmb^) + pmb(pmb^)(pmb^ — pmb^) = 0, end $$ где ( pmb(pmb^) ) — матрица Якоби (якобиан): $$ pmb(pmb^) = begin frac<partial f_1(pmb^)> & frac<partial f_1(pmb^)> & ldots & frac<partial f_1(pmb^)> \ frac<partial f_2(pmb^)> & frac<partial f_2(pmb^)> & ldots & frac<partial f_2(pmb^)> \ vdots & vdots & ldots & vdots \ frac<partial f_n(pmb^)> & frac<partial f_n(pmb^)> & ldots & frac<partial f_n(pmb^)> \ end $$ Уравнение (5) является линейной системой с матрицей коэффициентов ( pmb ) и вектором правой части ( -pmb(pmb^) ). Систему можно переписать в виде $$ pmb(pmb^)pmb = — pmb(pmb^), $$ где ( pmb = pmb^ — pmb^ ).
Таким образом, ( k )-я итерация метода Ньютона состоит из двух стадий:
1. Решается система линейных уравнений (СЛАУ) ( pmb(pmb^)pmb = -pmb(pmb^) ) относительно ( pmb ).
2. Находится значение вектора на следующей итерации ( pmb^ = pmb^ + pmb ).
Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему ( Ax = b ) методом Гаусса, реализованным в библиотеке LAPACK.
Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.
Можно также воспользоваться методами, реализованными для систем линейных уравнений.
💡 Видео
Метод ЭйлераСкачать
Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать
Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать
Метод Ньютона (Метод касательных)Скачать
15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать
Метод Касательных - ВизуализацияСкачать
Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать
Численное решение задачи Коши методом ЭйлераСкачать
Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать
11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравненияСкачать
Метод простых итераций пример решения нелинейных уравненийСкачать