Метод ньютона для систем линейных уравнений

Видео:Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

    Метод Ньютона (метод касательных) Пример Решения

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Видео:МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

    МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

    Нелинейные системы и уравнения

    В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ begin tag f_i(x_1, x_2, ldots, x_n) = 0, quad i = 1, 2, ldots n. end $$ Обозначим через ( mathbf = (x_1, x_2, ldots, x_n) ) вектор неизвестных и определим вектор-функцию ( mathbf(mathbf) = (f_1(mathbf), f_2(mathbf), ldots, f_n(mathbf)) ). Тогда система (2) записывается в виде $$ begin tag mathbf(mathbf) = 0. end $$ Частным случаем (3) является уравнение (1) (( n = 1 )). Второй пример (3) — система линейных алгебраических уравнений, когда ( mathbf (mathbf) = A mathbf — mathbf ).

    Видео:Численный метод Ньютона в ExcelСкачать

    Численный метод Ньютона в Excel

    Метод Ньютона

    Видео:Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

    Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

    Решение нелинейных уравнений

    При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению ( x^* ). В одношаговых итерационных методах новое приближение ( x_ ) определяется по предыдущему приближению ( x_k ). Говорят, что итерационный метод сходится с линейной скоростью, если ( x_ — x^* = O(x_k — x^*) ) и итерационный метод имеет квадратичную сходимость, если ( x_ — x^* = O(x_k — x^*)^2 ).

    В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ begin tag x_ = x_k + frac, quad k = 0, 1, ldots, end $$

    Вычисления по (4) проводятся до тех пор, пока ( f(x_k) ) не станет близким к нулю. Более точно, до тех пор, пока ( |f_(x_k)| > varepsilon ), где ( varepsilon ) — малая величина.

    Простейшая реализация метода Ньютона может выглядеть следующим образом:

    Чтобы найти корень уравнения ( x^2 = 9 ) необходимо реализовать функции

    Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение ( tanh(x) = 0 ), точное решение которого ( x = 0 ). Если ( |x_0| leq 1.08 ), то метод сходится за шесть итераций.

    Теперь зададим ( x_0 ) близким к ( 1.09 ). Возникнет переполнение

    Возникнет деление на ноль, так как для ( x_7 = -126055892892.66042 ) значение ( tanh(x_7) ) при машинном округлении равно ( 1.0 ) и поэтому ( f^prime(x_7) = 1 — tanh(x_7)^2 ) становится равной нулю в знаменателе.

    Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.

    Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.

    Учитывая выше сказанное реализуем функцию с учетом следующего:

    1. обрабатывать деление на ноль
    2. задавать максимальное число итераций в случае расходимости метода
    3. убрать лишний вызов функции f(x)

    Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.

    При реализации метода Ньютона нужно знать аналитическое выражение для производной ( f^prime(x) ). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:

    Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

    Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

    Решение нелинейных систем

    Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение ( pmb^ ), мы находим следующее приближение ( pmb^ ), аппроксимируя ( pmb(pmb^) ) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу ( pmb(pmb^) = 0 ) линейной $$ begin tag pmb(pmb^) + pmb(pmb^)(pmb^ — pmb^) = 0, end $$ где ( pmb(pmb^) ) — матрица Якоби (якобиан): $$ pmb(pmb^) = begin frac<partial f_1(pmb^)> & frac<partial f_1(pmb^)> & ldots & frac<partial f_1(pmb^)> \ frac<partial f_2(pmb^)> & frac<partial f_2(pmb^)> & ldots & frac<partial f_2(pmb^)> \ vdots & vdots & ldots & vdots \ frac<partial f_n(pmb^)> & frac<partial f_n(pmb^)> & ldots & frac<partial f_n(pmb^)> \ end $$ Уравнение (5) является линейной системой с матрицей коэффициентов ( pmb ) и вектором правой части ( -pmb(pmb^) ). Систему можно переписать в виде $$ pmb(pmb^)pmb = — pmb(pmb^), $$ где ( pmb = pmb^ — pmb^ ).

    Таким образом, ( k )-я итерация метода Ньютона состоит из двух стадий:

    1. Решается система линейных уравнений (СЛАУ) ( pmb(pmb^)pmb = -pmb(pmb^) ) относительно ( pmb ).

    2. Находится значение вектора на следующей итерации ( pmb^ = pmb^ + pmb ).

    Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему ( Ax = b ) методом Гаусса, реализованным в библиотеке LAPACK.

    Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.

    Можно также воспользоваться методами, реализованными для систем линейных уравнений.

    Видео:Метод касательных (метод Ньютона)Скачать

    Метод касательных (метод Ньютона)

    Системы нелинейных уравнений

    При решении задач моделирования поведения химических систем достаточно часто приходится решать системы уравнений, нелинейных по отношению к переменным. Системы n линейных уравнений с n неизвестными x 1 , x 2 , . xn в общем случае принято записывать следующим образом:

    Метод ньютона для систем линейных уравнений

    где F 1 , F 2 ,…, Fn – любые функции независимых переменных, в том числе и нелинейные относительно неизвестных.

    Как и в случае систем линейных уравнений, решением системы является такой вектор (или векторы) ( X * ) , который при подстановке обращает одновременно все уравнения системы в тождества.

    Метод ньютона для систем линейных уравнений

    Система уравнений может не иметь решений, иметь единственное решение, конечное или бесконечное количество решений. Вопрос о количестве решений должен решаться для каждой конкретной задачи отдельно.

    Рассмотрим несколько простейших итерационных методов решения систем нелинейных уравнений, а именно, метод простой итерации, метод Зейделя и метод Ньютона.

    Метод простой итерации

    Для реализации этого метода решаемую систему уравнений необходимо путем алгебраических преобразований привести к следующему виду, выразив из каждого уравнения по одной переменной следующим образом:

    Метод ньютона для систем линейных уравнений

    Выбирая затем вектор начального приближения

    , Метод ньютона для систем линейных уравнений

    подставляют его в преобразованную систему уравнений. Из первого уравнения получают новое приближение к первой переменной, из второго – второй и т. д. Полученное уточненное значение переменных снова подставляют в эти уравнения и т.д.Таким образом, на ( i+1 ) -м шаге итерационной процедуры имеем

    Метод ньютона для систем линейных уравнений

    Модификация Зейделя алгоритма простой итерации заключается в использовании уточненных значений переменных уже на текущем итерационном шаге. Так, для уточнения значений первой переменной используются только значения предыдущего шага, для второй переменной – значение x1 текущего шага, а остальных – от предыдущего и т.д.:

    Метод ньютона для систем линейных уравнений

    Математической основой метода является линеаризация функций F 1 , F 2 , Fn (левых частей уравнений, образующих систему) путем разложения в ряд Тейлора в окрестности точки начального приближения к решению и пренебрежением всеми членами ряда кроме линейных относительно приращений переменных.

    Рассмотрим метод на примере системы двух уравнений с двумя неизвестными:

    Метод ньютона для систем линейных уравнений

    Линеаризуем функции F 1 , F 2 путем разложения в ряд Тейлора вблизи некоторой точки (начального приближения) и пренебрежения всеми членами ряда кроме линейных относительно приращений переменных.

    Вспомним, что для функции одной переменной разложение в ряд Тейлора в окрестности некоторой точки x0 имеет следующий вид:

    Метод ньютона для систем линейных уравнений

    после пренебрежения всеми членами, кроме линейного:

    Метод ньютона для систем линейных уравнений

    Для функции нескольких переменных разложение проводится аналогично.

    Выберем для поиска решения системы уравнений некоторое начальное приближение

    Метод ньютона для систем линейных уравнений

    Запишем для функции F1 2-х переменных линейную часть разложения в ряд Тейлора в окрестности выбранной точки

    Метод ньютона для систем линейных уравнений

    для второго уравнения, аналогично

    Метод ньютона для систем линейных уравнений

    Если значения переменных x 1 и x 2 являются решением, то оба уравнения системы должны обратиться в ноль, поэтому полученные разложения приравниваем нулю.

    Для краткости записи введем следующие обозначения:

    Метод ньютона для систем линейных уравнений

    — приращение i -ой переменной

    Метод ньютона для систем линейных уравнений

    — значение первой частной производной функции Fj по переменной xi при значении переменных

    Метод ньютона для систем линейных уравнений

    Метод ньютона для систем линейных уравнений

    – значение j -ой функции при соответствующих значениях переменных, то есть невязка j ‑го уравнения.

    Получим систему линейных уравнений 2 x 2 относительно приращения переменных

    Метод ньютона для систем линейных уравнений

    Или, в матричной форме,

    Метод ньютона для систем линейных уравнений

    Метод ньютона для систем линейных уравнений

    где матрица значений частных производных называется матрицей Якоби (или якобианом). Решение этой системы дает вектор поправок к начальному приближению.

    Сложение его с вектором начального приближения дает новые значения переменных.

    Метод ньютона для систем линейных уравнений

    Итерационная процедура далее продолжается аналогично.

    Таким образом, процедура решения выглядит следующим образом:

    1. Выбирается начальное приближение, система приводится к нормальному виду, в аналитическом виде находятся частные производные левых частей уравнений системы по всем переменным.

    2. Рассчитывается матрица Якоби значений частных производных в точке начального приближения

    3. Решается система линейных уравнений относительно приращений переменных.

    4. к вектору начального приближения прибавляется вектор приращений

    5. проверяется условие сходимости и, если оно не достигнуто, то процедура повторяется с п. 2.

    Метод легко обобщается на систему уравнений любой размерности.

    Для функции F 1 n переменных линейная часть разложения в ряд Тейлора в окрестности точки Метод ньютона для систем линейных уравненийзаписывается так
    Метод ньютона для систем линейных уравнений

    После разложения всех уравнений системы и используя введенные ранее обозначения, после преобразования получим систему линейных уравнений порядка n относительно приращения переменных Δ xi

    Метод ньютона для систем линейных уравнений

    Или, в матричной форме,

    Метод ньютона для систем линейных уравнений

    В сокращенном виде можно записать так — ( F’ )(Δ x ) = — ( F ) , где матрица значений частных производных – ( F’ ) – называется матрицей Якоби или якобианом системы уравнений.

    Решение этой системы дает вектор поправок к начальному приближению. Сложение его с вектором начального приближения дает новые, уточненные значения переменных.

    Метод ньютона для систем линейных уравнений

    Частные производные, необходимые для расчета матрицы Якоби, можно рассчитать аналитически или же, если это невозможно или затруднительно, получать по формулам приближенного дифференцирования, например, как отношение приращения функции к приращению аргумента

    Метод ньютона для систем линейных уравнений,

    где эпсилон – достаточно малое число.

    Методы контроля сходимости итерационных методов
    решения систем

    Сходимость итерационного процесса решения системы нелинейных уравнений можно контролировать несколькими способами, например:

    1. Норма (эвклидова или -максимум) вектора невязок Метод ньютона для систем линейных уравнений

    2. Эвклидова норма вектора относительных отклонений переменных

    Метод ньютона для систем линейных уравнений

    3. Норма-максимум вектора относительных отклонений Метод ньютона для систем линейных уравнений

    Применим метод Ньютона для решения системы уравнений

    Метод ньютона для систем линейных уравнений

    Матрица частных производных (в аналитическом виде)

    Метод ньютона для систем линейных уравнений

    Система линейных уравнений

    Метод ньютона для систем линейных уравнений

    Может быть решена аналитически или методом Крамера или методом обращения матрицы. Возьмем начальное приближение x = 0,15, y = 0,17

    Первая итерация:

    Метод ньютона для систем линейных уравнений

    вектор значений функции

    Метод ньютона для систем линейных уравнений

    Рассчитанный вектор поправок

    Метод ньютона для систем линейных уравнений

    Новое приближение x = 0,15 + 0,028704 = 0,178704, y = 0,17 + 0,090926 = 0,260926

    Вторая итерация:

    Рассчитанный вектор поправок

    Метод ньютона для систем линейных уравнений

    Новое приближение x = 0,196656, y = 0,293359

    Третья итерация:

    Рассчитанный вектор поправок

    Метод ньютона для систем линейных уравнений

    Новое приближение x = 0,199867, y = 0,299739

    Уже на 6-й итерации эвклидова норма вектора невязок составляет 2.8∙10 -13 , максимальное относительное изменение переменных составляет 1.6∙10 -12 и решение сходится к x = 0.2, y = 0.3 с абсолютной погрешностью менее 5∙10 -7 .

    Метод простой итерации при этих же начальных условиях сходится с такой точностью на 33-м шаге, модификация Зейделя – на 31-м шаге.

    На рисунке ниже представлен пример организации вычислений при решении рассмотренной системы в программе MS Excel

    Метод ньютона для систем линейных уравнений

    Пояснения: В ячейки В3 и В4 помещены начальные приближения к решению системы (значения х 0 и у 0 , соответственно). В диапазоне ячеек D3:E4 помещены формулы для вычисления матрицы Якоби, при условии что х находится в ячейке В3, а у — в ячейке В4 (формулы приведены на рисунке ниже). В ячейках G3:G4 рассчитывается значение вектора невязок с отрицательным знаком.

    Метод ньютона для систем линейных уравнений

    В ячейке Н3 вычисляется эвклидова норма вектора невязок. В ячейках I3:I4 — решается система линейных уравнений и вычисляется вектор поправок к решению. Для этого обращается матрица коэффициентов системы (матрица Якоби) и умножается на вектор-столбец свободных членов (отрицательный вектор невязок). Формула в этот диапазон ячеек вводится как формула массива. Рядом — в ячейке J3 — рассчитывается норма вектора поправок для контроля сходимости (см. формулы на рисунке ниже).

    Метод ньютона для систем линейных уравнений

    Полученные в ячейках I3:I4 значения поправок на втором итерационном цикле прибавляются к начальному приближению (в ячейках В6:В7) и далее вычисления повторяются аналогично первому циклу.

    Набранные в строках 6 и 7 рабочего листа формулы могут копироваться до тех пор, пока не будет достигнута необходимая точность.

    Задачи, сводящиеся к решению системы нелинейных уравнений

    Примером задачи, в которой используется решение систем нелинейных уравнений, может служить аппроксимация таблично заданной функции математическими моделями, нелинейными по отношению к параметрам. Подробно она описывалась ранее.

    Если аппроксимирующую функцию и определяющие ее параметры ai обозначить следующим образом

    Метод ньютона для систем линейных уравнений

    то условие прохождения графика функции через все таблично заданные точки можно записать в виде следующей системы:

    Метод ньютона для систем линейных уравнений

    Другой пример — поиск экстремума (минимума или максимума) функции нескольких переменных

    Метод ньютона для систем линейных уравнений

    Условием экстремума является одновременное равенство нулю всех частных производных функции. Таким образом, необходимо решить систему уравнений следующего вида, которая, в общем случае, будет нелинейной

    🎬 Видео

    15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

    15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

    Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

    Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

    4.2 Решение систем нелинейных уравнений. МетодыСкачать

    4.2 Решение систем нелинейных уравнений. Методы

    Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать

    Метод Ньютона для решения нелинйеных уравнений в MS Excel

    Алгебра 7. Урок 8 - Системы линейных уравненийСкачать

    Алгебра 7. Урок 8 - Системы линейных уравнений

    Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать

    Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.

    Метод простых итераций пример решения нелинейных уравненийСкачать

    Метод простых итераций пример решения нелинейных уравнений

    10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать

    10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравнения

    Метод Ньютона (Метод касательных)Скачать

    Метод Ньютона (Метод касательных)

    Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)Скачать

    Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)

    Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать

    Метод Ньютона | Лучший момент из фильма Двадцать одно  21

    Решение системы уравнений методом ГауссаСкачать

    Решение системы уравнений методом Гаусса

    10 Численные методы решения нелинейных уравненийСкачать

    10 Численные методы решения нелинейных уравнений
Поделиться или сохранить к себе: