Метод ньютона для решения нелинейных уравнений maple

Видео:Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Нелинейные системы и уравнения

В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ begin tag f_i(x_1, x_2, ldots, x_n) = 0, quad i = 1, 2, ldots n. end $$ Обозначим через ( mathbf = (x_1, x_2, ldots, x_n) ) вектор неизвестных и определим вектор-функцию ( mathbf(mathbf) = (f_1(mathbf), f_2(mathbf), ldots, f_n(mathbf)) ). Тогда система (2) записывается в виде $$ begin tag mathbf(mathbf) = 0. end $$ Частным случаем (3) является уравнение (1) (( n = 1 )). Второй пример (3) — система линейных алгебраических уравнений, когда ( mathbf (mathbf) = A mathbf — mathbf ).

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Метод Ньютона

Видео:МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Решение нелинейных уравнений

При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению ( x^* ). В одношаговых итерационных методах новое приближение ( x_ ) определяется по предыдущему приближению ( x_k ). Говорят, что итерационный метод сходится с линейной скоростью, если ( x_ — x^* = O(x_k — x^*) ) и итерационный метод имеет квадратичную сходимость, если ( x_ — x^* = O(x_k — x^*)^2 ).

В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ begin tag x_ = x_k + frac, quad k = 0, 1, ldots, end $$

Вычисления по (4) проводятся до тех пор, пока ( f(x_k) ) не станет близким к нулю. Более точно, до тех пор, пока ( |f_(x_k)| > varepsilon ), где ( varepsilon ) — малая величина.

Простейшая реализация метода Ньютона может выглядеть следующим образом:

Чтобы найти корень уравнения ( x^2 = 9 ) необходимо реализовать функции

Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение ( tanh(x) = 0 ), точное решение которого ( x = 0 ). Если ( |x_0| leq 1.08 ), то метод сходится за шесть итераций.

Теперь зададим ( x_0 ) близким к ( 1.09 ). Возникнет переполнение

Возникнет деление на ноль, так как для ( x_7 = -126055892892.66042 ) значение ( tanh(x_7) ) при машинном округлении равно ( 1.0 ) и поэтому ( f^prime(x_7) = 1 — tanh(x_7)^2 ) становится равной нулю в знаменателе.

Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.

Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.

Учитывая выше сказанное реализуем функцию с учетом следующего:

  1. обрабатывать деление на ноль
  2. задавать максимальное число итераций в случае расходимости метода
  3. убрать лишний вызов функции f(x)

Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.

При реализации метода Ньютона нужно знать аналитическое выражение для производной ( f^prime(x) ). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:

Видео:Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

Решение нелинейных систем

Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение ( pmb^ ), мы находим следующее приближение ( pmb^ ), аппроксимируя ( pmb(pmb^) ) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу ( pmb(pmb^) = 0 ) линейной $$ begin tag pmb(pmb^) + pmb(pmb^)(pmb^ — pmb^) = 0, end $$ где ( pmb(pmb^) ) — матрица Якоби (якобиан): $$ pmb(pmb^) = begin frac<partial f_1(pmb^)> & frac<partial f_1(pmb^)> & ldots & frac<partial f_1(pmb^)> \ frac<partial f_2(pmb^)> & frac<partial f_2(pmb^)> & ldots & frac<partial f_2(pmb^)> \ vdots & vdots & ldots & vdots \ frac<partial f_n(pmb^)> & frac<partial f_n(pmb^)> & ldots & frac<partial f_n(pmb^)> \ end $$ Уравнение (5) является линейной системой с матрицей коэффициентов ( pmb ) и вектором правой части ( -pmb(pmb^) ). Систему можно переписать в виде $$ pmb(pmb^)pmb = — pmb(pmb^), $$ где ( pmb = pmb^ — pmb^ ).

Таким образом, ( k )-я итерация метода Ньютона состоит из двух стадий:

1. Решается система линейных уравнений (СЛАУ) ( pmb(pmb^)pmb = -pmb(pmb^) ) относительно ( pmb ).

2. Находится значение вектора на следующей итерации ( pmb^ = pmb^ + pmb ).

Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему ( Ax = b ) методом Гаусса, реализованным в библиотеке LAPACK.

Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.

Можно также воспользоваться методами, реализованными для систем линейных уравнений.

Видео:Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)

Решение нелинейных уравнений средствами системы Maple

Автор работы: Пользователь скрыл имя, 31 Марта 2013 в 16:08, курсовая работа

Краткое описание

Системы компьютерной математики в образовании — они становятся не только удобным инструментальным средством для выполнения огромного числа учебных расчетов, но и средством предоставления учащимся, а нередко и педагогам, знаний в области математики, физики и иных наук, использующих математические методы. Это позволяет отнести такие системы к интеллектуальным компьютерным системам представления знаний и к экспертным системам в области математических расчетов. Трудно переоценить и их роль в подготовке высококачественных электронных уроков, учебных курсов и книг, имеющих великолепные (в том числе анимационные) средства визуализации вычислений и «живые» примеры, которые учащиеся могут перекраивать, как говорится, на свой «вкус и цвет».

Содержание

1 СПОСОБЫ ЗАДАНИЯ ФУНКЦИЙ……………………….. 5

2 ОСНОВНЫЕ ВОЖМОЖНОСТИ СИСТЕМЫ MAPLE

2.1 РЕШЕНИЕ УРАВНЕНИЙ………………………………………….. 8
2.2 РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ……………………………… 9

3 ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

3.1 РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ………………… 10
3.2 РЕШЕНИЕ ТРАНСЦЕНДЕНТНЫХ
УРАВНЕНИЙ……………………………………………………. 12
3.3 РЕШЕНИЕ СИСТЕМ ТРАНСЦЕНДЕНТНЫХ
УРАВНЕНИЙ……………………………………………………… 15
3.4 РЕШЕНИЕ ФУНКЦИАНАЛЬНЫХ
УРАВНЕНИЙ……………………………………………………. 17

4 СИМВОЛЬНОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

4.1 РЕШЕНИЕ ФУНКЦИАНАЛЬНЫХ И РЕКУРЕНТНЫХ
УРАВНЕНИЙ……………………………………………………… 18

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ…………. 21

Прикрепленные файлы: 1 файл

Видео:Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

решение нелинейных уравнений.doc

1 СПОСОБЫ ЗАДАНИЯ ФУНКЦИЙ………………… …….. 5

2 ОСНОВНЫЕ ВОЖМОЖНОСТИ СИСТЕМЫ MAPLE

2.2 РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ……………………………… 9

3 ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

3.1 РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ………………… 10

3.2 РЕШЕНИЕ ТРАНСЦЕНДЕНТНЫХ

3.3 РЕШЕНИЕ СИСТЕМ ТРАНСЦЕНДЕНТНЫХ

3.4 РЕШЕНИЕ ФУНКЦИАНАЛЬНЫХ

4 СИМВОЛЬНОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

4.1 РЕШЕНИЕ ФУНКЦИАНАЛЬНЫХ И РЕКУРЕНТНЫХ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ…………. 21

Системы компьютерной математики (СКМ) класса Maple были созданы корпорацией Waterloo Maple, Inc. (Канада) как системы компьютерной алгебры с расширенными возможностями в области символьных (аналитических) вычислений. Новейшая версия Maple 8 позиционируется как универсальная система компьютерной математики, рассчитанная на широкого пользователя. Система содержит средства для выполнения быстрых численных расчетов, лежащих в основе математического моделирования различных явлений окружающего нас мира, систем и устройств различного назначения.

Цель данной курсовой работы – изучение литературы по теме “Решение нелинейных уравнений средствами системы Maple” и изучение области применения.

В качестве задачи поставленной передо мной руководителем, является решение нелинейных уравнений средствами системы Maple.

Заслуженной популярностью системы Maple (всех версий) пользуются в системах образования многих стран мира. Свыше 300 самых крупных университетов мира (включая и наш МГУ) взяли эту систему на вооружение и используют ее в научных и учебных расчетах. А число только зарегистрированных пользователей системы уже давно превысило миллион.

Maple — типичная интегрированная система. Она объединяет в себе:

  • мощный язык программирования (он же язык для интерактивного общения с системой);
  • редактор для подготовки и редактирования документов и программ;
  • современный многооконный пользовательский интерфейс с возможностью работы в диалоговом режиме;
  • мощную справочную систему со многими тысячами примеров;
  • ядро алгоритмов и правил преобразования математических выражений;
  • численный и символьный процессоры;
  • систему диагностики;
  • библиотеки встроенных и дополнительных функций;
  • пакеты функций сторонних производителей и поддержку некоторых других языков программирования и программ.

Ко всем этим средствам имеется полный доступ прямо из окна программы. Система Maple прошла долгий путь развития и апробации. Она реализована на больших ЭВМ, рабочих станциях Sun, ПК, работающих с операционной системой Unix, ПК класса IBM PC, Macintosh и др. Все это самым положительным образом повлияло на ее отработку и надежность (в смысле высокой вероятности правильности решений и отсутствия сбоев в работе). Не случайно ядро системы Maple используется целым рядом других мощных систем компьютерной математики, например системами класса Mathcad и MATLAB.

Системы компьютерной математики в образовании — они становятся не только удобным инструментальным средством для выполнения огромного числа учебных расчетов, но и средством предоставления учащимся, а нередко и педагогам, знаний в области математики, физики и иных наук, использующих математические методы. Это позволяет отнести такие системы к интеллектуальным компьютерным системам представления знаний и к экспертным системам в области математических расчетов. Трудно переоценить и их роль в подготовке высококачественных электронных уроков, учебных курсов и книг, имеющих великолепные (в том числе анимационные) средства визуализации вычислений и «живые» примеры, которые учащиеся могут перекраивать, как говорится, на свой «вкус и цвет».

1 СПОСОБЫ ЗАДАНИЯ ФУНКЦИЙ

В системе Maple имеется несколько способов представления функции.

Способ 1.Определение функции с помощью оператора присваивания (:=): какому-то выражению присваивается имя, например:

Если задать конкретное значение х ,то получится значение функции f для этого х .Например, если продолжить предыдущий пример и вычислить значение f при х= /4,то следует записать:

После выполнения этих команд переменная x имеет заданное конкретное значение /4.

Чтобы насовсем не присваивать переменной конкретного значения, удобнее использовать команду подстановки subs(,f), где в фигурных скобках указываются переменные хi и их новые значения аi (i=1,2,…), которые следует подставить в функцию f . Например:

Все вычисления в Maple по умолчанию производятся символьно, то есть результат будет содержать в явном виде иррациональные константы, такие как, е,p и другие. Чтобы получить приближенное значение в виде числа с плавающей запятой, следует использовать команду evalf (expr,t), где expr –выражение в числах после запятой. Например, в продолжение предыдущего примера, вычислим полученное значение функции приближенно:

Здесь использован символ (%) для вызова предыдущей команды.

Так же имеется возможность переходить в функции к полярным координатам, после ее определения.

Способ 2. Определение функции с помощью функционального оператора, который ставит в соответствие набору переменных (x1,x2,…) одно или несколько выражений (f1,f2,…). Например, определение функции двух переменных с помощью функционального оператора выглядит следующим образом:

Обращение к этой функции осуществляется наиболее привычным способом, когда в скобках вместо аргументов функции указываются конкретные значения переменных. В продолжение предыдущего примера вычисляется значение функции:

Способ 3.С помощью команды unapply (expr,x1,x2,…),где expr- выражение, x1,x2,…-набор переменных, от которых оно зависит, можно преобразовать выражение expr в функциональный оператор. Например:

В Maple имеется возможность определения неэлементарных функций вида посредством команды piecewise(cond_1,f1, cond_2,f2,…) .

Например, функция записывается следующим образом:

А функция f(x)= записывается так:

2 ОСНОВНЫЕ ВОЗМОЖНОСТИ СИСТЕМЫ MAPLE ПРИ РЕШЕНИИ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Maple –это пакет для аналитических вычислений на компьютере, содержащий более двух тысяч команд, которые позволяют решать задачи алгебры, геометрии, математического анализа, дифференциальных уравнений, статистики, математической физики. Работа в Maple проходит в режиме сессии- пользователь вводит предложения (команды, выражения, процедуры), которые воспринимаются условно и обрабатываются Maple.

2.1 Решение уравнений

Для решения уравнений в Maple существует универсальная команда solve( eq,x),где eg — уравнение, х – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появиться выражение, которое является решением данного уравнения. Например :

Если уравнение имеет несколько решений, которые могут понадобятся для дальнейших расчетов, то команде solve следует присвоить какое-нибудь имя name.Обращение к какому-либо k-ому решению данного уравнения производится указанием его имени name с номером решения k в квадратных скобках:name[k].Например:

2.2 Решение систем уравнений

Cистемы уравнений решаются с помощью такой же команды solve(,), только теперь в параметрах команды следует указать в первых фигурных скобках через запятую уравнения ,а во вторых фигурных скобках перечисляются через запятую переменные , относительно которых требуется решить систему. Если будет необходимо для дальнейших вычислений использовать полученные решения уравнений, то команде solve следует присвоить какое-нибудь имя name.Затем выполняется команда присвоения assign(name).После этого над решениями можно будет производить математические операции. Например, решим следующую систему:

Приведем еще один пример решения системы уравнений. содержащей три переменные:

Найдем сумму полученных решений:

3 ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Нелинейное уравнение в общем виде записывается следующим образом: F(X) = 0. Нелинейные уравнения могут быть двух видов:

1.Алгебраические: anx n +an-1x n-1 +…+a0=0

2.Трансцендентные – это уравнения, в которых x является аргументом тригонометрической, логарифмической или показательной функции.

Значение x0, при котором существует равенство f(x0)=0 называется корнем уравнения. Решить уравнение – значит найти этот корень.

3.1 Решение алгебраических уравнений

Для численного решения уравнений используется специальная команда fsolve ( eg ,x ), где eg-уравнение, а x-переменная, относительно которой это уравнение надо разрешить.

Рассмотрим такой пример: численно решить уравнение 23x 5 +105x 4 -10x 2 +17x=0 на отрезке [-1;1].

fsolve( poly, x, -1..1 );

Решим еще одно уравнение, найдя его корни на отрезках [1;2] и [4;8] .

Так же можно найти решение этого уравнения на множестве комплексных чисел, используя дополнительный параметр complex:

> fsolve(q, x, complex);

3.1 Решение алгебраических уравнений

Для численного решения уравнений используется специальная команда fsolve ( eg ,x ), где eg-уравнение, а x-переменная, относительно которой это уравнение надо разрешить.

Рассмотрим такой пример: численно решить уравнение 23x 5 +105x 4 -10x 2 +17x=0 на отрезке [-1;1].

Заранее присвоим нашему уравнению имя poly :

fsolve( poly, x, -1..1 );

Решим еще одно уравнение, найдя его корни на отрезках [1;2] и [4;8] .

Так же можно найти решение этого уравнения на множестве комплексных чисел, используя дополнительный параметр complex:

> fsolve(q, x, complex);

3.2 Решение трансцендентных уравнений.

Для решения данной группы уравнений применяется универсальная команда fsolve.При решении уравнений можно осуществлять упрощение выражений посредством команды simplify(eg).

Приведение подобных членов в выражении осуществляется командой collect(exp,var), где exp – выражение, var – имя переменной, относительно которой следует собирать подобные. В команде simplify в качестве параметров можно указать, какие выражения преобразовывать. Например, при указании simplify(eq,trig) будет производиться упрощение при использовании большого числа тригонометрических соотношений.

С помощью команды convert(exp, param), где exp – выражение, которое будет преобразовано в указанный тип param. В частности, можно преобразовать выражение, содержащее sinx и cosx, в выражение, содержащее только tgx, если указать в качестве параметра tan, или, наоборот, tgx, ctgx можно перевести в sinx и сosx, если в параметрах указать sincos.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Курсовая работа: Метод Ньютона для решения нелинейных уравнений

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«Приднестровский государственный университет им. Т.Г. Шевченко»

Кафедра физики, математики и информатики

по дисциплине: «Практикум по решению задач на ЭВМ»

«Метод Ньютона для решения нелинейных уравнений»

студентка III курса;

с доп. специальностью английский

преподаватель Панченко Т. А.

Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, при что выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов — пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли — навыки работы с уже имеющимся программным обеспечением, а также создания своего собственного программного обеспечения, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования высокого уровня и численные методы .

Численные методы разрабатывают и исследуют, как правило, высококвалифицированные специалисты-математики. Для большинства пользователей главной задачей является понимание основных идей и методов, особенностей и областей применения. Однако, пользователи хотят работать с ЭВМ не только как с высокоинтеллектуальным калькулятором, а еще и как с помощником в повседневной работе, хранилищем информации с быстрым и упорядоченным доступом, а так же с источником и обработчиком графической информации. Все эти функции современной ЭВМ я предполагаю продемонстрировать в настоящей курсовой работе.

Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Цели и задачи.

Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Данная работа состоит из трёх разделов, заключения и приложения. Первый раздел — теоретический и содержит общие сведения о методе Ньютона. Второй – это практическая часть. Здесь описывается метод Ньютона разобранный на конкретных примерах. Третий посвящён тестированию программы и анализу получившихся результатов. В заключении представлен вывод о проделанной работе.

Цельюданной курсовой работы является программная реализация метода Ньютона для решения нелинейных уравнений.

Для этого необходимо выполнить следующие задачи:

1. Изучить необходимую литературу.

2. Обзорно рассмотреть существующие методы по решению нелинейных уравнений.

3. Изучить метод Ньютона для решения нелинейных уравнений.

4. Рассмотреть решение нелинейных уравнений методом Ньютона на конкретных примерах.

5. Разработать программу для решения нелинейных уравнений методом Ньютона.

6. Проанализировать получившиеся результаты.

Рассмотрим задачу нахождения корней нелинейного уравнения

Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область [a,b], в которой существует корень уравнения или начальное приближение к корню x0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке [a,b], по крайней мере, одного корня уравнения (1) следует из условия Больцано:

f(a)*f(b) 0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 — о квадратичной, m=3 — о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

Метод ньютона для решения нелинейных уравнений maple; Метод ньютона для решения нелинейных уравнений maple(5,6)

или малости невязки:

Метод ньютона для решения нелинейных уравнений maple(7)

Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

Видео:10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

1.1 Обзор существующих методов решения нелинейных уравнений

Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

1)Метод итераций . При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x0 и точность ε. Первое приближение решения x1 находим из выражения x1 =f(x0 ), второе — x2 =f(x1 ) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f'(x)| ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой xi+1 =xi -F(xi ) F’(xi ). Условие сходимости метода касательных F(x0 )∙F»(x)>0, и др.

3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле Сккк /2.

Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (ак )* f (вк ) 0 ;

x* О [a,c] , если f(c)Ч f(b) 0 ;

Метод Ньютона (касательных) характеризуется квадратичной скоростью сходимости, т.е. на каждой итерации удваивается число верных знаков. Однако этот метод не всегда приводит к нужному результату. Рассмотрим этот вопрос подробнее.

Преобразуем уравнение (1) к эквивалентному уравнению вида:

В случае метода касательных Метод ньютона для решения нелинейных уравнений maple. Если известно начальное приближение к корню x=x0 , то следующее приближение найдем из уравнения x1 =g(x0 ), далее x2 =g(x1 ). Продолжая этот процесс, получим рекуррентную формулу метода простой итерации

Итерационный процесс продолжается до тех пор, пока не будут выполнены условия (5-7).

Всегда ли описанный вычислительный процесс приводит к искомому решению? При каких условиях он будет сходящимся? Для ответа на эти вопросы опять обратимся к геометрической иллюстрации метода.

Корень уравнения представляется точкой пересечения функций y=x и y=g(x). Как видно из рис. 3(а), если выполняется условие Метод ньютона для решения нелинейных уравнений maple, то процесс сходится, иначе – расходится (рис3(б)).

Метод ньютона для решения нелинейных уравнений maple

Итак, для того чтобы итерационный процесс был сходящимся и приводил к искомому результату, требуется выполнение условия:

Метод ньютона для решения нелинейных уравнений maple(12)

Переход от уравнения f(x)=0 к уравнению х=g(x) можно осуществлять различными способами. При этом важно, чтобы выбранная функция g(x) удовлетворяла условию (12). К примеру, если функцию f(x) умножить на произвольную константу q и добавить к обеим частям уравнения (1) переменную х, то g(x)=q*f(x)+x . Выберем константу q такой, чтобы скорость сходимости алгоритма была самой высокой. Если 1 (0) так, чтобы выполнилось условие

Задать малое положительное число ε , как точность вычислений. Положить к = 0.

2. Вычислить х (к+1) по формуле (9) :

Метод ньютона для решения нелинейных уравнений maple.

3. Если | x (k+1) — x (k) | (k+1) . Иначе увеличить к на 1 (к = к + 1) и перейти к пункту 2.

Решим вручную несколько нелинейных уравнений методом Ньютона, а потом сверим результаты с теми, которые получатся при реализации программного продукта.

Решить уравнение методом Ньютона.

sin x 2 + cosx 2 — 10x. = 0.

Вычисления производить с точностью ε = 0, 001.

Вычислим первую производную функции.

F’(x)=2x cosx 2 — 2x sinx 2 — 10.

Теперь вычислим вторую производную от функции.

F’’(x)=2cosx 2 — 4x 2 sinx 2 — 2sinx 2 — 4x 2 cosx 2 = cosx 2 (2-4x 2 ) — sinx 2 (2+4x 2 ).

Построим приближённый график данной функции.

Метод ньютона для решения нелинейных уравнений maple

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0) ) * f’’(x (0) ) > 0.

Пусть x (0) = 0, 565, тогда f(0. 565)*f’’(0. 565) = -4. 387 * (-0. 342) = 1. 5 > 0,

Условие выполняется, значит берём x (0) = 0, 565.

Теперь составим таблицу значений, для решения данного уравнения.

Название: Метод Ньютона для решения нелинейных уравнений
Раздел: Рефераты по информатике
Тип: курсовая работа Добавлен 01:06:49 13 декабря 2010 Похожие работы
Просмотров: 3968 Комментариев: 22 Оценило: 5 человек Средний балл: 3.6 Оценка: неизвестно Скачать
kx(k)f(x(k))f’(x(k))| x(k+1) — x(k) |
00. 565-4. 387-9. 9820. 473
10. 0920. 088-9. 8180. 009
20. 1010. 000-9. 8000. 000
30. 101

Отсюда следует, что корень уравнения х = 0, 101.

Решить уравнение методом Ньютона.

cos x – e -x2/2 + x — 1 = 0

Вычисления производить с точностью ε = 0, 001.

Вычислим первую производную функции.

F’(x) = 1 – sin x + x*e -x2/2 .

Теперь вычислим вторую производную от функции.

F’’(x) = e -x2/2 *(1-x 2 ) – cos x.

Построим приближённый график данной функции.

Метод ньютона для решения нелинейных уравнений maple

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0) ) * f’’(x (0) ) > 0.

Пусть x (0) = 2, тогда f(2)*f’’(2) = 0. 449 * 0. 010 = 0.05 > 0,

Условие выполняется, значит берём x (0) = 2.

Теперь составим таблицу значений, для решения данного уравнения.

kx(k)f(x(k))f’(x(k))| x(k+1) — x(k) |
020. 4490. 3611. 241
1-0. 2650. 8810. 8810. 301
2-0. 0210. 7320. 7320. 029
30. 0000. 7160. 7160. 000
41. 089

Отсюда следует, что корень уравнения х = 1. 089.

Решить уравнение методом Ньютона.

Вычисления производить с точностью ε = 0, 001.

Вычислим первую производную функции.

Теперь вычислим вторую производную от функции.

Построим приближённый график данной функции.

Метод ньютона для решения нелинейных уравнений maple

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0) ) * f’’(x (0) ) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 632 * 1, 632 = 1, 031 > 0,

Условие выполняется, значит берём x (0) = 1.

Теперь составим таблицу значений, для решения данного уравнения.

kx(k)f(x(k))f’(x(k))| x(k+1) — x(k) |
01, 0000, 6322, 3680, 267
10, 7330, 0571, 9460, 029
20, 7040, 0011, 9030, 001
30, 703

Отсюда следует, что корень уравнения х = 0, 703.

Решить уравнение методом Ньютона.

Вычислим первую производную функции.

F’(x) = -sin x + e -x/2 /2+1.

Теперь вычислим вторую производную от функции.

F’’(x) = -cos x — e -x/2 /4.

Построим приближённый график данной функции.

Метод ньютона для решения нелинейных уравнений maple

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0) ) * f’’(x (0) ) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = -0. 066 * (-0. 692) = 0. 046 > 0,

Условие выполняется, значит берём x (0) = 1.

Теперь составим таблицу значений, для решения данного уравнения.

kx(k)f(x(k))f’(x(k))| x(k+1) — x(k) |
01, 000-0. 0660. 4620. 143
11. 161-0. 0070. 3720. 018
21. 1620. 0001.0. 3630. 001
31. 162

Отсюда следует, что корень уравнения х = 1. 162.

Решить уравнение методом Ньютона.

Вычислим первую производную функции.

Теперь вычислим вторую производную от функции.

Построим приближённый график данной функции.

Метод ньютона для решения нелинейных уравнений maple

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x (0) ) * f’’(x (0) ) > 0.

Пусть x (0) = 1, тогда f(2)*f’’(2) = 0. 350 * 2, 350 = 0. 823 > 0,

Условие выполняется, значит берём x (0) = 1.

Теперь составим таблицу значений, для решения данного уравнения.

kx(k)f(x(k))f’(x(k))| x(k+1) — x(k) |
01, 0000, 3503, 0860, 114
10, 8860, 0132, 8380, 005
20, 8810, 0012, 8280, 000
30, 881

Отсюда следует, что корень уравнения х = 0, 881.

Видео:Решение системы линейных уравнений в MapleСкачать

Решение системы линейных уравнений в Maple

3.1 Описание программы

Данная программа создана для работы в текстовом и графическом режиме. Она состоит из модуля Graph, Crt, трёх функций и трёх процедур.

1. модуль Crt предназначен для обеспечения контроля над текстовыми режимами экрана, расширенными кодами клавиатуры, цветами, окнами и звуком;

2. модуль Graph предназначен для обеспечения контроля над графическими объектами;

3. procedure GrafInit — инициализирует графический режим;

4. function VF – вычисляет значение функции;

5. function f1 – вычисляет значение первой производной функции;

6. function X_Newt – реализует алгоритм решения уравнения методом Ньютона.

7. procedure FGraf – реализует построение графика заданной функции f(x);

Ots=35 — константа, определяющая количество точек для отступа от границ монитора;

fmin, fmax – максимальные и минимальные значения функции;

SetColor(4) – процедура, которая устанавливает текущий цвет графического объекта, используя палитру, в данном случае это красный цвет;

SetBkColor(9) – процедура, которая устанавливает текущий цвет фона, используя палитру, в данном случае – это светло-синий цвет.

8. Procedure MaxMinF – вычислят максимальные и минимальные значения функции f(x).

Line – процедура, которая рисует линию из точки с координатами (x1, у1) в точку с координатами (х2, у2);

MoveTo – процедура, перемещающая указатель (СР) в точку с координатами (х, у);

TextColor(5) – процедура, устанавливающая текущий цвет символов, в данном случае – это розовый;

Outtexty(х, у, ‘строка’) – процедура, которая выводит строку, начиная с позиции (х, у)

CloseGraph – процедура, закрывающая графическую систему.

Видео:Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать

Решение нелинейного уравнения методом Ньютона (касательных) (программа)

3.2 Тестирование программы

Для тестирования программы возьмем те примеры, которые решали в практической части работы, чтобы сверить результаты и проверить правильность работы программы.

1) sin x 2 + cosx 2 — 10x. = 0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке [a, b].

Введите точность вычисления eps=0. 01

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим : х=0, 0000002

2) cos x – e -x2/2 + x — 1 = 0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке [a, b].

Введите точность вычисления eps=0. 001

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим : х=-0, 0000000

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке [a, b].

Введите точность вычисления eps=0. 01

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим : х=0, 0000000

4) cos x –e -x/2 +x-1=0.

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке [a, b].

Введите точность вычисления eps=0. 001

Корень уравнения, найденный методом Ньютона:

сделаем проверку, подставив полученный ответ в уравнение.

Получим : х=0, 0008180

Данная программа вычисляет корни нелинейного уравнения методом Ньютона с точностью eps и чертит приблизительный график функции на отрезке [a, b].

Введите точность вычисления eps=0. 001

Корень уравнения, найденный методом Ньютона:

Сделаем проверку, подставив полученный ответ в уравнение.

Получим : х=0, 0000000

Целью работы было создать программу, которая вычисляет корень нелинейного уравнения методом Ньютона. Исходя из этого, можно сделать вывод, что цель достигнута, так как для ее осуществления были решены следующие задачи:

1.Изучена необходимая литература.

2.Обзорно рассмотрены существующие методы по решению нелинейных уравнений.

3.Изучен метод Ньютона для решения нелинейных уравнений.

4.Рассмотрено решение нелинейных уравнений методом Ньютона на примере.

5.Проведены тестирование и отладка программы.

Видео:Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать

Метод Ньютона для решения нелинйеных уравнений в MS Excel

Список используемой литературы

1. Б.П. Демидович, И.А Марон. Основы вычислительной математики. – Москва, изд. «Наука»; 1970.

2. В.М. Вержбицкий. Численные методы (линейная алгебра и нелинейные уравнения). – Москва, «Высшая школа»; 2000.

3. Н.С.Бахвалов, А.В.Лапин, Е.В.Чижонков. Численные методы в задачах и упражнениях. – Москва, «Высшая школа»; 2000.

4. Мэтьюз, Джон, Г.,Финк, Куртис, Д. Численные методы MATLAB, 3-е издание.- Москва, «Вильяс»; 2001.

🔥 Видео

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)Скачать

Численное решение уравнений, урок 4/5. Метод касательных (Ньютона)

Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать

Метод Ньютона | Лучший момент из фильма Двадцать одно  21

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравненийСкачать

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравнений

Численный метод Ньютона в ExcelСкачать

Численный метод Ньютона в Excel

Метод Ньютона (Метод касательных)Скачать

Метод Ньютона (Метод касательных)

Решение систем линейных уравнений в MapleСкачать

Решение систем линейных уравнений в Maple

11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравненияСкачать

11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравнения
Поделиться или сохранить к себе: