Метод мажорант при решении тригонометрических уравнений

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Ограниченность (или метод оценок)

Аналитические способы решения задач с параметрами. Ограниченность. Метод оценок.

Ещё один распространённый метод аналитического решения задач с параметрами — это метод оценок. Или по-другому — метод мажорант. Основывается он на таком важном свойстве многих функций, как ограниченность. Для начала пробежимся по самому понятию ограниченности.

Что такое ограниченность? Ограниченные функции.

То что это слово происходит от слова «граница», вопросов, думаю, ни у кого не вызывает.) Многое в нашем окружении обладает ограниченностью: сутки ограничены 24 часами, проезжая часть дороги ограничена тротуаром или обочиной, секретная территория ограничена забором с колючей проволокой. 🙂 А в математике бывают ограниченные функции.

Что же такое ограниченная функция? Это функция, область значений которой ограничена каким-то числом (или двумя числами). Что такое область значений функции? Это те значения, которые может принимать функция в принципе. Обозначается она, как мы помним, E(y).

Например, для линейной функции y = kx+b областью значений будет вся числовая прямая:

Метод мажорант при решении тригонометрических уравнений

Для параболы y = x 2 областью значений будет множество всех неотрицательных чисел:

Метод мажорант при решении тригонометрических уравнений

Для синуса или косинуса областью значений служит отрезок [-1; 1]. То есть, E(y) = [-1; 1].

Метод мажорант при решении тригонометрических уравнений

Для константы y = C область значений вообще состоит всего лишь из одной точки: E(y) = .

Метод мажорант при решении тригонометрических уравнений

Одних только этих примеров уже достаточно, чтобы понять, что бывают функции, графики которых неограниченно простираются сверху вниз (или снизу вверх), либо которые ограничены только сверху (снизу), либо которые «зажаты» между какими-то двумя числами. А также константы.

Так вот, функция f(x) , определённая на множестве X , называется ограниченной сверху числом А , если f(x)≤A для любого Метод мажорант при решении тригонометрических уравнений.

Например, сверху ограничена любая квадратичная функция y = ax 2 +bx+c с отрицательным коэффициентом «a» (то есть, с параболой ветвями вниз). Каким же именно числом? Значением в вершинке:

Метод мажорант при решении тригонометрических уравнений

Функция f(x) , определённая на множестве X , называется ограниченной снизу числом А , если f(x)≥A для любого Метод мажорант при решении тригонометрических уравнений.

Например, наши любимые парабола y = x 2 и модуль y = |x| ограничены снизу числом 0.

А вот функция, ограниченная как сверху, так и снизу, называется просто ограниченная функция. Например, любой синус и любой косинус ограничены числами Метод мажорант при решении тригонометрических уравненийАрктангенс ограничен числами ± π /2. Константа, ясен перец, ограничена сама собой же.)

И так далее. Что такое ограниченность и какие у неё бывают разновидности, в общих чертах теперь, думаю, понятно. ) Мы не будем здесь углубляться в густые дебри теории множеств, заикаться про точную верхнюю и нижнюю грани (называемые красивыми словами «супремум» и «инфимум»), ибо для решения нестандартных задач (с параметрами и без) приведённой выше информации про ограниченность вполне достаточно.)

А теперь составим небольшой список наиболее часто встречающихся ограниченных конструкций.

Квадратный трёхчлен

Любой квадратный трёхчлен ограничен сверху (снизу) значением в вершине соответствующей параболы:

Метод мажорант при решении тригонометрических уравнений

В частности, Метод мажорант при решении тригонометрических уравненийи Метод мажорант при решении тригонометрических уравнений.

Модуль

Любой модуль всегда неотрицателен: |x| ≥ 0.

Синус и косинус

Любой синус и любой косинус всегда лежит в отрезке от -1 до 1:

Метод мажорант при решении тригонометрических уравненийи Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Обратные тригонометрические функции

π /2 ≤ arcsin x ≤ π /2 0 ≤ arccos x ≤ π

π /2 arctg x π /2 0 arcctg x π

Полезные неравенства

Что ещё очень часто применяется при решении задач с использованием метода оценок, так это некоторые весьма и весьма нетривиальные, но очень полезные неравенства. Сейчас мы их выпишем и разберём (в том числе и докажем).

Неравенство о среднем арифметическом и среднем геометрическом (неравенство Коши)

Первое полезное неравенство, которое мы рассмотрим, — это неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Называется оно неравенством Коши и выглядит так:

Метод мажорант при решении тригонометрических уравнений

А по-русски это неравенство звучит так: « Среднее арифметическое двух неотрицательных чисел не меньше их среднего геометрического. »

Здесь есть ограничение: оба числа должны быть неотрицательными. Иначе либо корень справа вообще потеряет смысл, либо неравенство будет неверно.

Доказывается оно довольно просто. Для этого перенесём Метод мажорант при решении тригонометрических уравненийвлево и умножим обе части на 2:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Из свойств корней мы знаем, что:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений.

Если теперь вставить эти выражения в наше неравенство, то слева получится полный квадрат разности:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Последнее неравенство возражений, думаю, не вызывает: квадрат любого выражения всегда неотрицателен. 🙂 Тем самым, неравенство Коши доказано.

Обратим внимание, что неравенство здесь нестрогое — больше, либо равно. А вот когда достигается это самое «равно»? Только в единственном случае — когда Метод мажорант при решении тригонометрических уравнений.

Кстати говоря, неравенство Коши справедливо не только для двух, а для любого количества чисел. В более общей форме оно записывается вот так:

Метод мажорант при решении тригонометрических уравнений

Важное следствие из неравенства Коши: Метод мажорант при решении тригонометрических уравнений

Сумма двух взаимно обратных величин

Следующее неравенство, на которое мы обратим внимание, — это сумма двух положительных взаимно обратных величин. При a > 0 справедливо вот такое неравенство:

Метод мажорант при решении тригонометрических уравнений

Доказывается оно довольно легко с использованием предыдущего неравенства Коши.)

Метод мажорант при решении тригонометрических уравнений

Положив в нём b=1/a, получим:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Что и требовалось доказать.)

Здесь неравенство снова нестрогое и превращается в равенство только при a = 1/a, то есть при a = 1.

Связь квадрата и модуля

Третья группа полезных неравенств — связь квадрата какой-то величины с модулем этой самой величины:

Метод мажорант при решении тригонометрических уравненийпри Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравненийпри Метод мажорант при решении тригонометрических уравнений

Тут доказательство довольно просто провести графически. Вспомните график параболы y = x 2 и график модуля y = |x| . И всё станет ясно.)

Метод мажорант при решении тригонометрических уравнений

Оценка некоторых тригонометрических выражений

А теперь рассмотрим одно полезное неравенство из тригонометрии. Очень полезное для метода мажорант! Основано оно на так называемом методе вспомогательного аргумента. Про этот метод будет отдельный урок в разделе по тригонометрии, а здесь — просто краткие сведения.)

Итак, пусть у нас есть вот такое выражение с синусом и косинусом:

Метод мажорант при решении тригонометрических уравнений

Здесь a и b – просто какие-то числа, одновременно не равные нулю. Нам теперь надо оценить это выражение. Для этого проделываем вот такую манипуляцию: умножаем и тут же делим всю конструкцию на вот такой корень Метод мажорант при решении тригонометрических уравнений:

Метод мажорант при решении тригонометрических уравнений

Казалось бы, что это ещё за выкрутасы такие? Ничего, сейчас интересно будет. 🙂 Теперь делим числитель почленно на этот самый корень:

Метод мажорант при решении тригонометрических уравнений

А теперь — самое интересное! Вводим вот такие обозначения:

Метод мажорант при решении тригонометрических уравнений

Правомерна ли такая замена? Проверим по основному тригонометрическому тождеству:

Метод мажорант при решении тригонометрических уравнений

Итак, основное тригонометрическое тождество выполнено, а это значит, что наши загадочные числа

Метод мажорант при решении тригонометрических уравнений

и впрямь есть косинус и синус некоторого угла Метод мажорант при решении тригонометрических уравнений. Этот новый угол «фи» и называется тем самым вспомогательным углом. 🙂 Кстати, можно точно определить, чему равен этот самый угол «фи». Для этого поделим друг на друга его синус и косинус. Как мы знаем, это будет тангенс:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Что ж, перепишем наше выражение с учётом доказанных фактов:

Метод мажорант при решении тригонометрических уравнений

А теперь — сворачиваем наше выражение по формуле синуса суммы двух углов. Вот так:

Метод мажорант при решении тригонометрических уравнений.

Любой синус, как нам известно, заключён в пределах [-1; 1], а это значит, что всё наше выражение Метод мажорант при решении тригонометрических уравненийзаключено вот в таких пределах:

Метод мажорант при решении тригонометрических уравнений

Это неравенство довольно часто применяется при оценке тригонометрических выражений. Полезно запомнить.)

Принцип оценки левой и правой части (или принцип разделяющего числа)

И, наконец, последнее что мы рассмотрим — это вот такую типичную ситуацию. Пусть у нас имеется уравнение f(x) = g(x). Допустим, мы каким-то образом установили, что левая часть не больше какого-то числа А:

Метод мажорант при решении тригонометрических уравнений

Также мы установили, что правая часть не меньше этого же числа:

Метод мажорант при решении тригонометрических уравнений

Или всё наоборот — не суть важно. Важно другое — одна из функций ограничена сверху числом А, а вторая функция ограничена снизу этим же самым числом.) Когда возможно равенство левой и правой части? Да! Когда одновременно и левая, и правая части равны этому граничному числу А!

То есть, наше исходное уравнение f(x) = g(x) будет равносильно вот такой системе:

Метод мажорант при решении тригонометрических уравнений

Решается такая системка, как правило, уже без особого труда.

Этот метод часто применяется в той ситуации, когда слева и справа стоят функции разной природы. Скажем, синус и многочлен. Или косинус и логарифм… Это намёк.) Попробуйте оценить левую и правую части! В 99% случаев помогает!

Теперь кратко о задачах, которые будут рассматриваться в настоящем материале. Большинство из этих задач НЕ решаются стандартными способами — сведением к простейшим уравнениям или неравенствам, разложением на множители, возведением в квадрат и подобными преобразованиями. Однако, если попытаться оценить конструкции, входящие в задачу, как дорога к ответу становится простой, понятной и красивой, а задача из монстра становится белой и пушистой.) «Внешний вид» задач, где явно напрашивается метод оценок, примерно следующий:

— наличие слева и справа «разнородных» функций (синуса и логарифма, косинуса и квадратного трёхчлена и т.п.);

— присутствие ограниченных конструкций (синусов/косинусов, квадратных трёхчленов, модулей, суммы взаимно обратных величин и т.д.).

Распознавать такие задачи после некоторой тренировки труда не составит. Если тренироваться, конечно. 🙂

Уравнения (неравенства) без параметра, решаемые методом оценок

Что ж, хватит грузной теории, перейдём теперь к конкретным задачам и посмотрим на метод оценок в действии. Для начала рассмотрим задачи без параметра, но с одной или несколькими неизвестными, а уже потом будем рассматривать конкретные параметрические задачи из вариантов ЕГЭ.

Начнём пока что с такого задания.

Пример 1

Решить уравнение: Метод мажорант при решении тригонометрических уравнений

Если мы сейчас начнём решать это уравнение по стандартным шаблонам и напишем какую-нибудь ересь типа

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений,

то погрязнем в вычислениях и выкладках, что называется, всерьёз и надолго. 🙂

Как же подступиться к этому уравнению? Путём недолгих размышлений, можно, конечно, догадаться, что число x = 0 является его корнем. А вдруг, кроме нуля, у него есть ещё корни? Так и будем гадать на кофейной гуще? Так как мы не гадалки, то попробуем применить обещанный метод мажорант или оценок.

Внешний вид уравнения (слева косинус, справа — многочлен) намекает на оценку левой и правой частей. Вот и попробуем оценить левую и правую части нашего злого уравнения.

Во-первых, про косинус мы знаем, что он всегда лежит в диапазоне от -1 до 1:

Метод мажорант при решении тригонометрических уравнений

А про квадрат мы также знаем, что он всегда неотрицателен:

Метод мажорант при решении тригонометрических уравнений

А, стало быть, если к квадрату прибавить 1, то вся правая часть будет не меньше единички:

Метод мажорант при решении тригонометрических уравнений

А теперь осмысливаем результат: левая часть не больше единицы, а правая часть — не меньше единицы. А это значит, что равенство обеих частей возможно только в единственном случае — когда обе части равны единице! И наше зверское уравнение превращается в эквивалентную систему:

Метод мажорант при решении тригонометрических уравнений

Нетрудно убедиться, что единственным решением этой системки является x = 0. И, следовательно, других корней, кроме нуля, это уравнение не имеет. Вот это строгое обоснование того факта, что других корней нет.

Пример 2

Метод мажорант при решении тригонометрических уравнений

Снова совершенно немыслимый набор функций: слева логарифм от какой-то белиберды с синусом, а справа — корень из квадратного трёхчлена.) Значит, стандартные приёмы (типа возведения в квадрат, ликвидации логарифмов) бесполезны. Значит, пример заточен под какой-то нестандартный ход. Какой? Слева и справа стоят функции совершенно разного рода — корень и логарифм. Такой внешний вид примера — своего рода сигнал к применению метода мажорант. Попробуем оценить обе части? 🙂

Итак, берём сначала логарифм

Метод мажорант при решении тригонометрических уравнений

Что можно сказать про выражение |sin0,5 π x| , которое сидит внутри логарифма? Смотрим нашу сводку неравенств и находим похожее:

Метод мажорант при решении тригонометрических уравнений

Но у нас аргумент синуса не просто икс, а Метод мажорант при решении тригонометрических уравнений! Ну и что? Запоминаем: каким бы сложным аргумент синуса (косинуса) ни был, любой синус (косинус) всё равно будет от -1 до 1 (или по модулю от 0 до 1).

Значит, для синуса можно записать:

Метод мажорант при решении тригонометрических уравнений

Если теперь это неравенство помножить на (-1), то получим:

Метод мажорант при решении тригонометрических уравнений

Следующим шагом прибавляем 17 ко всем трём частям:

Метод мажорант при решении тригонометрических уравнений

И, наконец, последнее усилие — берём логарифм по основанию 2. Так как в основании логарифма стоит двойка (т.е. число, большее 1), то знаки нашего двойного неравенства от логарифмирования не поменяются:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Вот так. Значит, вся конструкция слева заключена в отрезке [4; log217]. Иначе быть не может.

Теперь берёмся за правую часть, с корнем Метод мажорант при решении тригонометрических уравнений.

Квадратный трёхчлен следует оценивать, предварительно выделив полный квадрат. Вот так:

Метод мажорант при решении тригонометрических уравнений

Зачем мы привели трёхчлен именно к такому виду? А затем, что теперь стало всё видно: если от 16 отнять что-то в квадрате (неотрицательное!), то это выражение будет в любом случае не больше 16:

Метод мажорант при решении тригонометрических уравнений

Значит, если из этого выражения извлечь корень, то он точно будет не больше Метод мажорант при решении тригонометрических уравнений, т.е. 4. Итак,

Метод мажорант при решении тригонометрических уравнений

А нулём мы дополнительно ограничиваем просто в силу неотрицательности арифметического корня.)

А теперь — состыковываем результаты наших оценок левой и правой частей:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Теперь уже видно, что нашим разделяющим числом (т.е. мажорантой) является четвёрка: левая часть не меньше 4, а правая — не больше 4. А значит, для того чтобы наше уравнение имело корни, левая и правая части одновременно должны быть равны 4. Таким образом, наше злое уравнение равносильно вот такой системе:

Метод мажорант при решении тригонометрических уравнений

А решение этой системы уже не представляет никаких трудностей. Из второго уравнения легко можно получить единственный корень x = 1:

Метод мажорант при решении тригонометрических уравнений(возводим обе части в квадрат)

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Проверим первое уравнение при x = 1:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Гуд.) Всё совпало!

Итак, единственным корнем уравнения является x = 1.

Идея ясна? Отлично! Тогда разбираем похожую задачку. Для тренировки.)

Пример 3

Метод мажорант при решении тригонометрических уравнений

Ну, с корнем справа всё ясно. Его оцениваем с помощью выделения полного квадрата у подкоренного трёхчлена. 🙂 Полная аналогия с предыдущим примером:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений.

Тогда Метод мажорант при решении тригонометрических уравненийи, следовательно, Метод мажорант при решении тригонометрических уравнений.

Итак, правая часть не больше четвёрки. 🙂

А вот левую часть на этот раз будем оценивать с помощью неравенства Коши. Зря, что ли, мы его выводили? 🙂 Перепишем его ещё разочек, умножив обе части на 2:

Метод мажорант при решении тригонометрических уравнений.

Если теперь положить в нём Метод мажорант при решении тригонометрических уравненийи Метод мажорант при решении тригонометрических уравнений, то получим следующее:

Метод мажорант при решении тригонометрических уравнений

Итого Метод мажорант при решении тригонометрических уравнений, т.е. левая часть не меньше четвёрки.

И снова нашим разделяющим числом оказалась четвёрка. 🙂 То есть, всё наше уравнение равносильно системе:

Метод мажорант при решении тригонометрических уравнений

Единственным решением этой системы (а значит, и исходного уравнения) является x=1.

Разберём теперь уравнение с двумя переменными. Казалось бы, всё гораздо сложнее, однако внешность обманчива. Если уметь грамотно проводить оценку. 🙂

Пример 4

Найти все пары чисел (x; y), удовлетворяющих уравнению:

Метод мажорант при решении тригонометрических уравнений

Уравнение одно, а переменных две — икс и игрек. Как тут не испугаться… Однако, глаза боятся, а руки делают. 🙂 Оцениваем квадратный трёхчлен справа. Это нам уже знакомо:

Метод мажорант при решении тригонометрических уравнений

Значит, 2(y-1) 2 +13 ≥ 13 , причём равенство достигается только при y = 1, т.е. когда обнуляется скобка (y-1) 2 . Запомним этот важный факт. 🙂

А что можно сказать про левую часть Метод мажорант при решении тригонометрических уравнений? Пока — ничего определённого. Но! Если присмотреться, то можно увидеть, что данное выражение — это конструкция вида Метод мажорант при решении тригонометрических уравнений. Метод вспомогательного угла нам в помощь! 🙂

Первым делом считаем выражение Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Число 13 здесь всплыло неспроста. 🙂 Ниже сами увидите. Итак, умножаем и делим наше выражение на 13:

Метод мажорант при решении тригонометрических уравнений

А теперь — вводим новый угол Метод мажорант при решении тригонометрических уравненийвот с такими характеристиками: cos φ = 12/13; sin φ = 5/13.

Определим теперь сам угол. Через тангенс. 🙂

Метод мажорант при решении тригонометрических уравнений

Значит, вся наша левая часть запишется вот так:

Метод мажорант при решении тригонометрических уравнений

Стало быть, Метод мажорант при решении тригонометрических уравнений.

Без введения вспомогательного угла так красиво оценить левую часть вряд ли получилось бы. 🙂 Именно поэтому метод введения вспомогательного угла надо знать. В подобных задачах только он и спасает положение. Намёк понятен?)

Вот мы и вышли на разделяющее число. Тринадцать. Левая часть не больше тринадцати, а правая — не меньше тринадцати. Заменяем уравнение на равносильную систему:

Метод мажорант при решении тригонометрических уравнений

Вспоминаем все наши преобразования:

Метод мажорант при решении тригонометрических уравнений

Второе уравнение системы выполняется только при y = 1. А вот в первом уравнении, как и в обычном тригонометрическом, получается серия решений:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Решаем это простенькое тригонометрическое уравнение с синусом и получаем:

Метод мажорант при решении тригонометрических уравнений

Вспомнив, что же такое это самое Метод мажорант при решении тригонометрических уравнений, окончательно получим:

Метод мажорант при решении тригонометрических уравнений

Получили бесконечную серию пар (x; y).

Ответ: ( π /2+arctg5/12+2 π n; 1 ), n Z

Итак, с уравнениями потренировались, рассмотрим теперь и что-нибудь из неравенств. Для неравенств применение метода мажорант полностью совпадает с таковым для уравнений. 🙂 Например, такое задание.

Пример 5

Метод мажорант при решении тригонометрических уравнений

Внешний вид неравенства (слева логарифмы, справа — синусы) явно намекает на метод мажорант. Начнём с оценки левой части.

Метод мажорант при решении тригонометрических уравнений

По одному очень хорошему свойству логарифмов, можно перевернуть второй из них:

Метод мажорант при решении тригонометрических уравнений

Получили сумму двух взаимно обратных величин. Которая, как мы помним из нашей сводки, не меньше двойки. Вот и это неравенство нам тоже пригодилось! 🙂 Вперёд! Оцениваем:

Метод мажорант при решении тригонометрических уравнений

Причём равенство достигается только при

Метод мажорант при решении тригонометрических уравнений

Оба этих числа входят в ОДЗ нашего выражения слева.

Что же касается правой части, то в знаменателе нашей дроби сидит самый обычный квадратный трёхчлен. Только относительно синуса. 🙂 Всё как обычно, выделяем полный квадрат и оцениваем:

Метод мажорант при решении тригонометрических уравнений

Раз знаменатель дроби не меньше единицы, то вся дробь не больше двойки:

Метод мажорант при решении тригонометрических уравнений

Причём равенство этой дроби двойке достигается только когда её знаменатель равен единице, т.е. (sin(x+y)-1) 2 +1 = 1 или sin(x+y) = 1.

А теперь состыковываем результаты наших оценок. Для простоты как-нибудь обозначим наши функции:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Мы получили, что:

Метод мажорант при решении тригонометрических уравнений, Метод мажорант при решении тригонометрических уравнений.

При этом у нас есть вот такое нестрогое неравенство:

Метод мажорант при решении тригонометрических уравнений

Левая функция должна быть не больше правой. Но при этом левая функция находится выше двойки (либо равна), а правая — ниже двойки (либо равна). Как вы думаете, когда такое неравенство может выполняться? Ну, конечно! Только в одном единственном случае — когда обе части будут равны двойке! Иными словами, наше нестрогое неравенство может выполняется только в случае равенства. Бывает.)

Итак, заменяем всё наше страшное неравенство уже привычной нам системой:

Метод мажорант при решении тригонометрических уравнений

Рассматриваем теперь два отдельных случая — х = π /3 и х = — π /3.

Случай 1 ( х = π /3 )

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Получили первую пачку решений:

Метод мажорант при решении тригонометрических уравнений

Разбираем второй случай:

Случай 2 ( х = — π /3 )

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Вторая пачка решений:

Метод мажорант при решении тригонометрических уравнений

Вот и вся задача. 🙂

Метод мажорант при решении тригонометрических уравнений

Как видите, когда разделяющее число (мажоранта) найдено, то дальнейшее решение труда в таких задачах, как правило, уже не составляет. Вопрос — а как искать такое число? К сожалению, универсального секретного заклинания на все случаи жизни здесь дать нельзя, но я надеюсь, что знание тех неравенств, что я привёл в самом начале урока, резко повысит ваши шансы на успех. Ну и плюс практика и опыт. Без них в сложных нестандартных задачах делать нечего. Увы.

Что ж, перейдём теперь к задачам с параметрами. В том числе и из ЕГЭ.

Задачи с параметрами на ограниченность.

Начнём пока с относительно несложной задачки с тригонометрией.

Пример 6

Найдите все значения параметра a , при каждом из которых уравнение

Метод мажорант при решении тригонометрических уравнений

имеет хотя бы один корень.

В принципе, решение этой задачи вполне возможно провести «в лоб». Сначала составить условие неотрицательности правой части (арифметический корень!), затем уже при этом ограничении возвести обе части в квадрат и получить тригонометрическое уравнение с косинусом, правая часть которого зависит от параметра. После чего ещё составить дополнительное требование, чтобы косинус был от -1 до 1 (иначе корней у уравнения не будет!). Короче, надо будет решать целую кучу неравенств — квадратных, двойных, с некрасивыми дискриминантами и корнями, потом пересекать множества их решений, сравнивать иррациональные числа… В общем, извиняюсь, геморрой конкретный. 🙂 Сейчас я проведу её решение гораздо короче — методом мажорант. Кому интересен «лобовой» способ решения и кто большой трудоголик — попробуйте осилить. Без ошибок. 🙂 И сравните результат. 🙂 Итак, поехали!

Прежде всего, оцениваем квадратный трёхчлен справа. Это мы уже давно умеем:

Метод мажорант при решении тригонометрических уравнений

Правая часть не превосходит тройки. Отлично! Берёмся теперь за корень. С ним тоже никаких проблем. Распутывать начинаем, разумеется, с косинуса:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Итак, наш корень не меньше тройки. А трёхчлен — не больше. Прекрасно! Это значит, что всё наше уравнение может иметь корни только при условии равенства обеих частей этой самой тройке:

Метод мажорант при решении тригонометрических уравнений

Очевидно, первое уравнение нашей системы корни имеет. 🙂 Находить нам их не надо. )

Итак, единственное допустимое значение параметра — это a = 4. При прочих значениях « a » корней у уравнения не будет.

Теперь рассмотрим систему.

Пример 7

Найдите все значения параметра a , при каждом из которых система уравнений

Метод мажорант при решении тригонометрических уравнений

имеет хотя бы одно решение, и укажите решения системы для каждого из найденных значений a .

Не пугаемся огромных степеней! На самом деле, это сделано как раз для того, чтобы запугать решающего. Не более.) Но мы же не будем поддаваться на такие глупые уловки, правда? 🙂

Запоминаем такую простую вещь. Если в задаче тусуются синусы и косинусы в очень больших степенях, то в 99% случаев срабатывает самая обыкновенная оценка синуса и косинуса по модулю, и огромные степени в таких задачах сводятся к обычным квадратам и (очень часто!) основному тригонометрическому тождеству, после чего дальнейшее решение становится очень простым и понятным. Посмотрим, как это работает на примере нашей страшной, на первый взгляд, системы.

Берём, например, левую часть первого уравнения:

Метод мажорант при решении тригонометрических уравнений

Мы знаем, что синус и косинус всегда заключены в отрезке [-1; 1]. Иными словами, это какие-то дробные числа, по модулю меньшие (либо равные) единице. А теперь подумаем: чем больше степень такого числа, тем меньше по модулю будет результат. Возьмём для конкретики, например, число 0,5. Тогда будет справедлива такая цепочка неравенств:

Метод мажорант при решении тригонометрических уравнений

То же самое будет и с любым синусом или косинусом. Это значит, что

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Знак нестрогого неравенства здесь поставлен из-за того, что, например, при обнулении аргумента , т.е. при x = 1 у нас достигается равенство:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Теперь сложим почленно эти два неравенства:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Это значит, что левая часть не больше единички.

Та же самая оценка левой части будет справедлива и для остальных уравнений:

Метод мажорант при решении тригонометрических уравнений;

Метод мажорант при решении тригонометрических уравнений.

Таким образом, все левые части наших уравнений не больше единички.

Разбираемся теперь с правыми частями. Во-первых, квадратный трёхчлен. Тот, что с параметром. Он в каждом уравнении один и тот же. Выделим полный квадрат и оценим:

Метод мажорант при решении тригонометрических уравнений

А теперь анализируем всю конструкцию справа (например, у первого уравнения)

Метод мажорант при решении тригонометрических уравнений

Радикалы — в любом случае неотрицательные величины. А это значит, что вся правая часть — не меньше единички:

Метод мажорант при решении тригонометрических уравнений

Причём равенство достигается только при a = 2 и y = 2, z = 3.

Ну вот. А теперь берём каждое уравнение и состыковываем все наши оценки:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Из этих оценок теперь отлично видно, что вся наша страшная система будет иметь решение лишь при a = 2 , и это решение (1; 2; 3). При прочих значениях параметра правая часть любого из уравнений будет строго больше левой, и решений система иметь не будет.

Ответ: (1; 2; 3) при a = 2 . При прочих a решений нет.

И последняя задачка, которую мы рассмотрим в данном уроке, — это уже типичная задачка из ЕГЭ. Поэтому собираем волю в кулак, устраиваемся поудобнее, запасаемся попкорном терпением и читаем/смотрим. 🙂

Пример 9

Найдите все значения параметра a , при каждом из которых уравнение

Метод мажорант при решении тригонометрических уравнений

имеет хотя бы один корень.

Задачка эта требует достаточно кропотливого решения. Тем не менее его вполне можно провести, если чётко видеть цель. Я не просто подробно оформлю решение этой задачи, но и объясню, как именно надо «видеть цель». 🙂 Итак, начнём.)

Во-первых, неплохо было бы растащить по разным частям логарифм и линейные конструкции с модулями. Пока они у нас намешаны в одну кучу. Действуем:

Метод мажорант при решении тригонометрических уравнений

Так, что дальше? Дальше можно упростить аргумент логарифма: там явно напрашивается выделение полного квадрата. Упрощаем:

Метод мажорант при решении тригонометрических уравнений.

Прекрасно! Значит, всё наше злое уравнение перепишется вот в таком виде:

Метод мажорант при решении тригонометрических уравнений

Всё. Дальнейшим упрощениям это уравнение уже не поддаётся. Теперь будем анализировать каждую функцию — слева и справа.

Пусть левая функция с логарифмом у нас будет f(x), а правая — g(x):

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Функции разнородны. Причём обе непрерывны на всей числовой прямой. Разнородность подаёт нам знак, что нужно пробовать применять метод оценок. Начнём с логарифма — он проще. 🙂

Что можно сказать про аргумент логарифма? Квадратичная функция 2(x-5a) 2 +15, которая сидит внутри логарифма, как и любая парабола ветвями вверх, убывает от Метод мажорант при решении тригонометрических уравненийдо точки Метод мажорант при решении тригонометрических уравнений(вершины), а потом возрастает. Поэтому в этой точке аргумент логарифма достигает своего наименьшего значения. Стало быть, и сам логарифм по основанию 15 от этой функции в точке Метод мажорант при решении тригонометрических уравненийтакже будет достигать своего наименьшего значения, так как функция y = log15x монотонно возрастает. Итак, вся наша функция f(x) ограничена снизу числом f(5a):

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Итого, наш логарифм ограничен снизу числом 25.

А вот со второй функцией

Метод мажорант при решении тригонометрических уравнений

ситуация будет поинтереснее. 🙂 Давайте для начала мысленно представим, как будет выглядеть график этой функции. Переменная икс везде стоит в первой степени, только внутри модулей. Стало быть, в результате раскрытия каждого модуля будет получаться какая-то линейная функция y = kx+b. На каждом промежутке — своя. И поэтому график функции g(x) будет представлять собой ломаную линию, состоящую из кусочков прямых.

Но здесь есть одна существенная проблема: нули подмодульных выражений Метод мажорант при решении тригонометрических уравненийи Метод мажорант при решении тригонометрических уравненийзависят от параметра. Который может быть каким угодно — положительным или отрицательным. И, в зависимости от знака параметра a , расположение точек Метод мажорант при решении тригонометрических уравненийи Метод мажорант при решении тригонометрических уравненийна числовой прямой будет различным. Поэтому исследование нашей функции g(x) надо разветвлять на два случая: Метод мажорант при решении тригонометрических уравненийи a .

Случай 1 (a ≥ 0)

Начнём со случая Метод мажорант при решении тригонометрических уравнений. В этом случае точка Метод мажорант при решении тригонометрических уравненийна числовой прямой находится левее точки Метод мажорант при решении тригонометрических уравнений. И теперь раскрытие модулей по промежуткам не составляет никаких затруднений.

1.1) Метод мажорант при решении тригонометрических уравнений. Оба модуля раскрываются с минусом:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Значит, на этом интервале наша функция g(x) – часть возрастающей прямой с угловым коэффициентом Метод мажорант при решении тригонометрических уравнений. Переходим к следующему промежутку.

1.2) Метод мажорант при решении тригонометрических уравнений. Модули раскрываются с разными знаками:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

На этом интервале получили убывающую прямую с угловым коэффициентом Метод мажорант при решении тригонометрических уравнений. Идём дальше.

1.3) Метод мажорант при решении тригонометрических уравнений. Оба модуля раскрываются с плюсом:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Здесь наша функция ещё сильнее убывает. 🙂 Угловой коэффициент Метод мажорант при решении тригонометрических уравнений.

Итак, все три подслучая рассмотрены. A теперь — собираем воедино результаты наших исследований и рисуем схематичный график. 🙂

Метод мажорант при решении тригонометрических уравнений

Зачем мы нарисовали этот график? А затем, что из графика теперь хорошо видно, что наша функция g(x) в точке Метод мажорант при решении тригонометрических уравненийдостигает своего наибольшего значения. То есть, ограничена сверху числом g(5a).

Сосчитаем это число:

Метод мажорант при решении тригонометрических уравнений

Теперь вспоминаем — чего от нас хотят-то? А то так и про основной вопрос задачи невольно забываешь.) Нас просят решить уравнение f(x) = g(x).

При этом про функции f и g мы знаем, что в одной и той же точке Метод мажорант при решении тригонометрических уравненийони достигают своих экстремальных значений: f – наименьшего, а g – наибольшего. Стало быть, чтобы уравнение f(x) = g(x) имело хотя бы один корень, необходимо и достаточно, чтобы

Метод мажорант при решении тригонометрических уравнений

Да! В данной ситуации это требование является как необходимым, так и достаточным, потому что экстремальные значения принимаются функциями в одной точке, а не в разных. Смотрим на картинку, почему это так:

Метод мажорант при решении тригонометрических уравнений

Остаётся решить неравенство:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

А теперь главное — вспомнить, что здесь мы рассматриваем только Метод мажорант при решении тригонометрических уравнений.

А значит, нам нужно одновременное выполнение этих двух требований:

Метод мажорант при решении тригонометрических уравнений

Нетрудно доказать, что число Метод мажорант при решении тригонометрических уравненийположительно, а значит весь наш полученный отрезок целиком и полностью удовлетворяет условию Метод мажорант при решении тригонометрических уравнений .

Итого, первый кусок окончательного ответа — это отрезок

Метод мажорант при решении тригонометрических уравнений

Случай 2 (a 0)

Рассматриваем теперь отрицательные значения параметра: a

В этом случае будет всё наоборот — точка Метод мажорант при решении тригонометрических уравненийбудет правее точки Метод мажорант при решении тригонометрических уравнений. Раскрываем модули, никуда не денешься (а я предупреждал, что решение достаточно трудоёмкое, хоть и не такое сложное :)).

2.1) Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Функция g(x) – часть возрастающей прямой с угловым коэффициентом Метод мажорант при решении тригонометрических уравнений.

2.2) Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Функция g(x) – часть возрастающей прямой с угловым коэффициентом Метод мажорант при решении тригонометрических уравнений.

2.3) Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Функция g(x) – часть убывающей прямой с угловым коэффициентом Метод мажорант при решении тригонометрических уравнений.

Снова рисуем картинку:

Метод мажорант при решении тригонометрических уравнений

И снова замечаем, что наша функция g(x) достигает своего наибольшего значения в той же самой точке Метод мажорант при решении тригонометрических уравнений. То есть, снова ограничена сверху числом g(5a). Считаем это число:

Метод мажорант при решении тригонометрических уравнений

Думаю, уже особо комментировать не нужно, что нам снова надо решить неравенство:

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Метод мажорант при решении тригонометрических уравнений

Получили одно единственное решение неравенства — минус пять. Бывает.) Естественно, требованию Метод мажорант при решении тригонометрических уравненийминус пятёрка вполне себе удовлетворяет. 🙂 Значит, ещё одним куском ответа является изолированная точка .

Фуух! Ну что, поздравляю всех, кто дочитал и особенно — тех, кто разобрался! Осталось лишь обе части ответа сложить в кучу.

Метод мажорант при решении тригонометрических уравнений

Всё, задача полностью решена. 🙂

Заключение:

Если слева и справа стоят функции разной природы, то пробуем оценивать левую и правую части. Помогает в 99% случаев.

Не боимся «страшного» вида задачи. 🙂 В большинстве случаев, как ни парадоксально, чем страшнее и безнадёжнее выглядит задача, тем проще её свести к нескольким простейшим, которые уже решаются по стандартной технологии. Как? Оцениваем сначала внешний вид конструкции, выявляем её тип сумма взаимно обратных величин, квадратный трёхчлен, синусы, модули и т.п. А потом — оцениваем саму конструкцию. Уже теми приёмами и методами, что приведены в этом материале. 🙂

Также не боимся ситуации, когда число уравнений меньше числа неизвестных. Как правило, недостающее звено легко получить, используя те же самые разобранные нами оценки.

Тренируемся и набиваем руку! Без серьёзного опыта здесь — никак. В продаже появилось несметное количество сборников задач ЕГЭ, методичек именно по задачам с параметрами с огромным количеством задач для тренировки. На моём сайте тоже обязательно будут разбираться различные задачи с параметрами из ЕГЭ и даже с мехмата. И обязательно будут задачи для самостоятельного решения. 🙂 В особом разделе, который на пятёрку. 🙂

А у меня на сегодня всё. Всем спасибо за внимание и до новых встреч! 🙂

Видео:#121 МЕТОД МАЖОРАНТ // ТРИГОНОМЕТРИЯСкачать

#121  МЕТОД МАЖОРАНТ // ТРИГОНОМЕТРИЯ

Метод мажорант и его применение при решении уравнений и неравенств. II республиканская научно-практическая конференция школьников «От школьного проекта к формированию интеллектуальной элиты РТ»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Метод мажорант при решении тригонометрических уравненийМетод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравненийII республиканская научно-практическая конференция школьников

«От школьного проекта к формированию интеллектуальной элиты РТ»

Секция: Математика. Информатика. Физика.

« Метод мажорант и его применение

при решении уравнений и неравенств »

Автор: Садыкова Гульназ Рафисовна

Ученица 10 класса

МБОУ «Кирбинская средняя

Лаишевского муниципального района

Научный руководитель: учитель математики

1. Определение мажоранты функции…………………………………….. 4

3. Примеры решения уравнений и неравенств методом мажорант…….. 8

Список использованной литературы……………………………………. 16

« Учимся не для школы, а для жизни»

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках, которые проявляются в обобщении, конкретизации, анализе, синтезе. Для реализации этих задач математического образования большую роль играют нестандартные задачи, при решении которых развивается творческое и логическое мышление, формируются способности нестандартно мыслить, проявляется самостоятельность, умение применять способы решения задачи в практической деятельности, использовать полученные знания и умения в решении прикладных и практических задач.

Решение уравнений и неравенств — важный раздел в математике. Успешное изучение математики невозможно без умения решать разнообразные неравенства и уравнения, поэтому я решила взять в качестве темы научно-исследовательской работы один из способов решения неравенств и уравнений – метод мажорант. Этим методом можно решать нестандартные уравнения; уравнения повышенной сложности, например, уравнения в левой и правой части которой находятся функции, имеющие различную природу; уравнения или системы уравнений, в которых количество переменных превышает количество уравнений; задачи с параметром.

В данном исследовании, во-первых, я узнала совершенно новый для себя способ решения уравнений-метод мажоранта, который встречается в ЕГЭ и мало изучается в школе. Во-вторых, научилась применять его непосредственно при решении уравнений и неравенств. Для этого я изучила и проанализировала материал по данной теме, на конкретных примерах училась применять метод мажоранта при решении уравнений и неравенств.

Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства. Применение метода оценок будет успешным, если знать, как находить экстремумы элементарных функций, область значений, исследовать функцию с помощью производной, а также знать некоторые «полезные» неравенства.

Актуальность этой работы определяется успешным применением метода мажоранта в решении олимпиадных задач и заданий части С ЕГЭ, вступительных заданий в ВУЗы. Также работая над проектом я расширила свой кругозор и базу математических знаний.

Объект исследования: уравнения и неравенства в математике.

показать практически универсальный алгоритм решения многих задач методом мажорант, заинтересовать читателя решением нестандартных задач, стимулировать самостоятельный поиск и создание собственных задач подобного типа.

Гипотеза: решение уравнений и неравенств методом мажорант.

Для подтверждения выдвинутой гипотезы были поставлены

следующие задачи исследования:

сформировать навыки использования нетрадиционных методов решения уравнений и неравенств;

развивать умения самостоятельно приобретать и применять знания;

сформировать устойчивый интерес к предмету для дальнейшей самостоятельной деятельности при подготовке к ЕГЭ и к конкурсным экзаменам в вузы

пополнить библиотеку методических пособий в школьном кабинете математики.

Базой моих исследований являются книги и журналы: 1. 3000 конкурсных задач по математике./ Сост. Куланин Е.Д., Норин В.П., Федин С.Н., Шевченко Ю.А.; под ред. проф. Н.А. Бобылева. –М.: Айрис Рольф; 1997. 2. Задачи по математике. Уравнения и неравенства. Справочное пособие./ Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. –М.: Наука; 1987. 3. Ткачук В.В. «Математика абитуриенту», Москва: МЦНМО, 2008. 4. Электронный научный журнал «Информационно-коммуникационные технологии в педагогическом образовании»

При работе над проектом применялись следующие методы:

1) теоретические: изучение и анализ источников информации по методу мажоранта; моделирование приемов использования метода мажоранта в решениях уравнений и неравенств.

2) эмпирические: исследование различных случаев решения уравнений и неравенств.

Работа « Метод мажорант и его применение при решении уравнений и неравенств » имеет практическое значение . Оно заключается в следующем: метод мажорант при решении уравнений и неравенств нам поможет при подготовке к ЕГЭ и к вступительным экзаменам в ВУЗы, получить более высокий конечный результат.

Оборудование – мультимедийный проектор

Определение мажоранты функции

Эйнштейн говорил так: «Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, гораздо важнее. Политика существует для данного момента, а уравнения будут существовать вечно».

Работа посвящена одному из нестандартных методов решения уравнений и неравенств – методу, основанному на свойстве ограниченности функций, который называется метод «мажорант».

Определение. Мажорантой данной функции f(х) на множестве Р (или множества А чисел) называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р (соответственно, х ≤ М для всех х из А, или х ≥ М для всех х из А).

Термин «мажоранта» происходит от франц узского слова «majorante» , от «majorer» — объявлять большим.

Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции. Приведем примеры функций, мажоранты которых знаем.

Видео:Метод МажорантСкачать

Метод Мажорант

Метод Мажорант

Метод мажорант при решении тригонометрических уравнений

Государственное бюджетное образовательное учреждение

средняя образовательная школа № 000

Автор проекта: ученик 10 «Б» класса

Научный руководитель проекта: учитель математики

1.1.Признаки присутствия мажоранты в задаче..………………. …. ….4

1.2.Примеры элементарных функций, которые имеют ограниченное множество значений……………………………..……………………. ….5

1.3. Встреча на краю. 6

При решении нестандартных задач встречаются уравнения, содержащие разнородные функции. Задания подобного типа встречаются среди экзаменационных.

Решение уравнений и неравенств — важный раздел в математике. Успешное изучение математики невозможно без умения решать разнообразные неравенства и уравнения. Один из способов решения неравенств и уравнений – метод мажорант. Этим методом можно решать нестандартные уравнения; уравнения повышенной сложности, задачи с параметром.

В разных источниках данный метод называется по-разному. Некоторые математики называют этот метод по-другому: «метод математической оценки», «метод mini-max», задачи «встреча на краю». Но в большинстве источников он называется «метод мажорант» Это очень красивый метод, и ему непременно надо научиться всем. Метод, который имеет место быть в ЕГЭ.

Цель: показать практически универсальный алгоритм решения многих задач методом мажорант

Изучить определения мажоранты функции и исследовать, какие функции имеют мажоранту. Изучить метод мажоранта, применить этот метод для решения нестандартных уравнений и неравенств. Привести примеры уравнений и неравенств, которые могут быть решены методом мажоранта. Создать сборник задач по теме метод мажоранта для подготовки к ЕГЭ.

История слова «мажорант». В большой советской энциклопедии читаем «Мажоранта и миноранта, две функции, значения первой из которых не меньше, а второй не больше соответствующих значений данной функции (для всех рассматриваемых значений независимого переменного).

Главные выводы работы:

Выполняя данный исследовательский проект, я провел огромную работу. Для начала надо было собрать и систематизировать информацию по данной теме, что было достаточно тяжело, так как эта тема для меня новая, незнакомая, и все надо было начинать с нуля. Главной же частью данного проекта была практическая часть, а именно создание сборника задач по теме «Метод мажоранта» при решении уравнений и неравенств, который пригодится будущем, а именно при подготовке к ЕГЭ.

1. Обзор литературы

Метод мажорант — нестандартный метод решения уравнения и неравенств. Заключается в том, что одна часть уравнения (или неравенства) ограничена сверху неким числом М, а другая часть уравнения (или неравенства) ограничена снизу этим же числом М. Число М называется мажорантой.

Мы знаем много мажорант для известных функций:

Методом мажорант решаются уравнения вида f(x)=g(x), где f(x) и g(x) — функции совершенно разного вида.

Мажорантой (от magiorante – главенствующий) данной функции f на множестве р называется такое число М, что либо f(х) ≤ М для всех хМетод мажорант при решении тригонометрических уравненийр, либо f(х) ≥ М для всех хМетод мажорант при решении тригонометрических уравненийр.

1.1. Признаки присутствия мажоранты в задаче:

    Смешанное уравнение (или неравенство), т. е. в задании есть разнородные функции, например, логарифмическая и линейная, или квадратный трехчлен и тригонометрическая, или вообще несколько видов, т. е. наличие в уравнении функций, уравнения с которыми решаются принципиально разными способами Сложный, трехэтажный и пугающий вид, большие числа и коэффициенты, т. е. если очевидно, что стандартными методами уравнение не решить.

Для нахождения мажоранты необходимы:

    Знание свойств функций; Умение исследовать функции на максимум, минимум, области значений и прочие характеристики; Умение преобразовывать функции, так, чтобы было проще вытащить мажоранту;

При применении данного метода используется определение ограниченных функций.

    Функция f(x) называется ограниченной сверху, если существует такое число А, что для всех значений аргумента из области определения функции выполняется неравенство Метод мажорант при решении тригонометрических уравнений. Функция f(x) называется ограниченной снизу, если существует такое число А, что для всех значений аргумента из области определения функции выполняется неравенство Метод мажорант при решении тригонометрических уравнений. Функция, ограниченная сверху и снизу, называется просто ограниченной.

При решении уравнения с помощью метода мажорант, мы, как правило: выясняем, что правая часть уравнения больше или равна какого-то числа, а левая – меньше или равна. Или наоборот. равенство возможно, если обе части уравнения равны этому числу приравниваем ту часть уравнения, которая проще, к этому числу и находим соответствующее значение х проверяем, что при этом значении х другая часть уравнения также равна этому числу.

Необходимо знать некоторые нестандартные неравенства:

1. а) Метод мажорант при решении тригонометрических уравненийпри a > 0, равенство при a = 1

б) Метод мажорант при решении тригонометрических уравненийпри a 0 |x| ≥ 0 Метод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравнений≥ 0 —Метод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравнений≤ arcsinx ≤ Метод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравнений0 ≤ arccosx ≤ Метод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравненийМетод мажорант при решении тригонометрических уравнений Метод мажорант при решении тригонометрических уравнений

🎦 Видео

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.

Все методы решения тригонометрических уравнений за 30 минутСкачать

Все методы решения тригонометрических уравнений за 30 минут

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

Решение тригонометрических уравнений методом вспомогательного углаСкачать

Решение тригонометрических уравнений методом вспомогательного угла

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Решение тригонометрических уравнений. Практическая часть. 10 класс.Скачать

Решение тригонометрических уравнений. Практическая часть. 10 класс.

Шаг 8. Сумасшедшее уравнение (метод мажорант)Скачать

Шаг 8. Сумасшедшее уравнение (метод мажорант)

Методы решения тригонометрических уравненийСкачать

Методы решения тригонометрических уравнений

Метод МАЖОРАНТ 3^(x²+1)+5^(x⁴)=4-(tgx)²Скачать

Метод МАЖОРАНТ 3^(x²+1)+5^(x⁴)=4-(tgx)²

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

Методика решения тригонометрических уравненийСкачать

Методика решения тригонометрических уравнений

Решение тригонометрических уравнений. Вебинар | МатематикаСкачать

Решение тригонометрических уравнений. Вебинар | Математика
Поделиться или сохранить к себе: