Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:
Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.
- Метод вариации постоянной (Лагранжа)
- Шаг 1 Решение однородного уравнения
- Шаг 2 Заменим постоянную C на функцию
- Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа
- Метод вариации произвольной постоянной решения линейных неоднородных уравнений
- Уравнение Лагранжа
- Общий метод решения уравнения Лагранжа
- Решение типичных задач
- Готовые работы на аналогичную тему
- 💡 Видео
Видео:9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать
Метод вариации постоянной (Лагранжа)
В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.
Шаг 1 Решение однородного уравнения
Ищем решение однородного уравнения:
Это уравнение с разделяющимися переменными
Разделяем переменные — умножаем на dx , делим на y :
Интегрируем:
Интеграл по y — табличный:
Тогда
Потенцируем:
Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :
Шаг 2 Заменим постоянную C на функцию
Теперь заменим постоянную C на функцию от x :
C → u ( x )
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.
По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:
.
Подставляем в исходное уравнение (1):
(1) ;
.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2):
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.
Видео:Видеоурок "Системы дифференциальных уравнений"Скачать
Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа
Решаем однородное уравнение:
Разделяем переменные:
Умножим на :
Интегрируем:
Интегралы табличные:
Потенцируем:
Заменим постоянную e C на C и убираем знаки модуля:
Отсюда:
Заменим постоянную C на функцию от x :
C → u ( x )
Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.
Общее решение уравнения:
.
Автор: Олег Одинцов . Опубликовано: 27-07-2012 Изменено: 01-03-2015
Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Метод вариации произвольной постоянной решения линейных неоднородных уравнений
Пример №1 . Найдём общее решение уравнения y» + 4y’ + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y» + 4y’ + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y1 = e — x и y2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C1(x)e — x + C2(x)e -3 x . Для нахождения производных C’1, C’2 составляем систему уравнений (8)
C′1·e -x +C′2·e -3x =0
-C′1·e -x -3C′2·e -3x =9e -3x
решая которую, находим ,
Интегрируя полученные функции, имеем
Окончательно получим
Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:
y(0) =1 + 3ln3
y’(0) = 10ln3
Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 — 4·1·8 = 4
Корни характеристического уравнения: r1 = 4, r2 = 2
Следовательно, фундаментальную систему решений составляют функции: y1=e 4x , y2=e 2x
Общее решение однородного уравнения имеет вид: y =C1·e 4x +C2·e 2x
Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C’i составляем систему уравнений:
C′1·e 4x +C′2·e 2x =0
C′1(4e 4x ) + C′2(2e 2x ) = 4/(2+e -2x )
Выразим C’1 из первого уравнения:
C’1 = -c2e -2x
и подставим во второе. В итоге получаем:
C’1 = 2/(e 2x +2e 4x )
C’2 = -2e 2x /(e 2x +2e 4x )
Интегрируем полученные функции C’i:
C1 = 2ln(e -2x +2) — e -2x + C * 1
C2 = ln(2e 2x +1) – 2x+ C * 2
Поскольку y =C1·e 4x +C2·e 2x , то записываем полученные выражения в виде:
C1 = (2ln(e -2x +2) — e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x
C2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) — e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x
Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3
Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) — 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C1 e 2x + C2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C1 + C2 +4 ln(3)+ ln(3)-2) = 4C1 + 2C2 +10 ln(3) -4 = 10ln3
Получаем систему из двух уравнений:
3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
4C1 + 2C2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C1 + 2C2 = 4
или
C * 1 + C * 2 = 2
2C1 + C2 = 2
Откуда: C1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2e 4x ·ln(e -2x +2) — e 2x + e 2x ·ln(2e 2x +1) – 2x·e 2x + 2·e 2x
Видео:19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать
Уравнение Лагранжа
Вы будете перенаправлены на Автор24
Видео:Дифференциальные уравнения. Метод Лагранжа. Метод вариации произвольной постоянной.Скачать
Общий метод решения уравнения Лагранжа
Предположим, что некоторое дифференциальное уравнение первого порядка $Fleft(x,y,y’right)=0$, не разрешенное относительно производной, удалось разрешить относительно $y$, то есть представить в виде $y=fleft(x,y’right)$.
Частным случаем дифференциального уравнения такого вида является уравнение Лагранжа $y=xcdot phi left(y’right)+psi left(y’right)$, в котором $phi left(y’right)ne y’$.
Дифференциальное уравнение Лагранжа решают методом введения параметра $y’=p$.
При этом исходное дифференциальное уравнение можно переписать в виде $y=xcdot phi left(pright)+psi left(pright)$.
Выполнив дифференцирование по $x$ с учетом $dy=pcdot dx$, после несложных алгебраических преобразований получаем линейное дифференциальное уравнение относительно функции $xleft(pright)$ и её производной $frac $, а именно: $frac -frac cdot x=frac $.
Это уравнение решается известным методом, в результате чего получим его общее решение $x=Fleft(p,Cright)$.
Подставив полученный результат в соотношение $y=xcdot phi left(pright)+psi left(pright)$, получим $y=Fleft(p,Cright)cdot phi left(pright)+psi left(pright)$.
Дополнительные частные либо особые решения уравнения Лагранжа могут быть получены в результате нахождения действительных корней уравнения $p-phi left(pright)=0$ и подстановки их в $y=xcdot phi left(pright)+psi left(pright)$.
Видео:Системы дифференциальных уравнений. Часть 2Скачать
Решение типичных задач
Решить дифференциальное уравнение $y=-xcdot y’+y’^ $.
Имеем дифференциальное уравнение Лагранжа, в котором $phi left(y’right)=-y’$ и $psi left(y’right)=y’^ $.
Вводим параметр $y’=p$ и получаем $y=-xcdot p+p^ $, а также $phi left(pright)=-p$ и $psi left(pright)=p^ $.
Теперь получим уравнение вида $frac -frac cdot x=frac $. Для этого находим: $phi ‘left(pright)=-1$; $psi ‘left(pright)=2cdot p$; $p-phi left(pright)=p-left(-pright)=2cdot p$.
Уравнение приобретает вид: $frac +frac cdot x=1$.
Применяем алгоритм решения линейного неоднородного дифференциального уравнения:
- Стандартный вид $frac+fraccdot x=1$, где $Pleft(pright)=frac$, $Qleft(pright)=1$.
- Вычисляем интеграл $I_ =int Pleft(pright)cdot dp =int fraccdot dp =fraccdot ln left|pright|$.
Записываем частное решение $vleft(pright)=e^<-frac cdot ln left|pright|> $, выполняем упрощающие преобразования: $ln vleft(pright)=-frac cdot ln left|pright|$; $ln left(vleft(pright)right)^ +ln left|pright|=0$; $left(vleft(pright)right)^ cdot left|pright|=1$.
Выбираем для $vleft(pright)$ простейший ненулевой вариант: $vleft(pright)=frac <sqrt
> $.
cdot dp =fraccdot p^<frac> $ и получаем $uleft(p,Cright)=fraccdot p^<frac> +C$.
> =fraccdot p+frac<sqrt
> $.
Подставляем полученный результат в $y=xcdot phi left(pright)+psi left(pright)$. Получаем: $y=-left(frac cdot p+frac <sqrt
> right)cdot p+p^ =frac cdot p^ -Ccdot sqrt
$.
Таким образом, общее решение данного уравнения Лагранжа в параметрической форме имеет вид: $left<begin <x=frac cdot p+frac <sqrt
> > \ <y=frac cdot p^ -Ccdot sqrt
> endright. $.
Для определения дополнительных частных либо особых решений находим корни уравнения $p-phi left(pright)=0$: получаем $p=0$.
Подставляем $p=0$ в $y=-xcdot p+p^ $ и получаем $y=0$. Это решение является частным, так как получается из общего при $C=frac cdot p^<frac > $.
Готовые работы на аналогичную тему
Решить дифференциальное уравнение $y=xcdot y’cdot left(y’+2right)$.
Имеем дифференциальное уравнение Лагранжа, в котором $phi left(y’right)=y’cdot left(y’+2right)$ и $psi left(y’right)=0$.
Вводим параметр $y’=p$ и получаем $y=xcdot pcdot left(p+2right)$, а также $phi left(pright)=pcdot left(p+2right)$ и $psi left(pright)=0$.
Теперь получим уравнение вида $frac -frac cdot x=frac $. Для этого находим: $phi ‘left(pright)=2cdot p+2$; $psi ‘left(pright)=0$; $p-phi left(pright)=p-left(p^ +2cdot pright)=-p^ -p$.
Уравнение приобретает вид:
- Имеем стандартный вид $x’+Pleft(pright)cdot x=0$, где $Pleft(pright)=frac
$.
- Вычисляем интеграл $I=int Pleft(pright)cdot dp =int frac
cdot dp =2cdot ln left|pright|$.
- Записываем общее решение в виде $x=Ccdot e^ $ и выполняем упрощающие преобразования:
Подставляем полученный результат в $y=xcdot pcdot left(p+2right)$. Получаем: $y=frac <p^> cdot pcdot left(p+2right)$ или $y=Ccdot left(1+frac
right)$.
Таким образом, общее решение данного уравнения Лагранжа в параметрической форме имеет вид: $left<begin <x=frac <p^> > \ <y=Ccdot left(1+frac
right)> endright. $.
Параметр $p$ из этой системы можно исключить:
$p=frac <sqrt> <pm sqrt> $; $y=Ccdot left(1pm frac <2cdot sqrt> <sqrt> right)$ — это результат решения в явной форме.
Для определения дополнительных частных либо особых решений находим корни уравнения $p-phi left(pright)=-p^ -p=0$.
Получаем: $pcdot left(p+1right)=0$, откуда имеем два корня $p=0$ и $p=-1$.
Подставляем первый корень $p=0$ в $y=xcdot pcdot left(p+2right)$ и получаем первое дополнительное решение данного уравнения $y=0$. Это решение является частным, так как получается из общего при $C=0$.
Подставляем второй корень $p=-1$ в $y=xcdot pcdot left(p+2right)$ и получаем второе дополнительное решение данного уравнения $y=-x$. Это решение является особым, так как не получается из общего ни при каком $C$.
💡 Видео
Системы дифференциальных уравнений. Метод исключенияСкачать
Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравненийСкачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Матричный метод решения систем уравненийСкачать
Видеоурок "Системы диф. уравнений. Метод Эйлера"Скачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Системы дифференциальных уравнений. Метод исключения.Скачать
Система дифференциальных уравнений. Операционный методСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Системы дифференциальных уравненийСкачать