Обсуждение и решение задач по математике, физике, химии, экономике
Часовой пояс: UTC + 3 часа [ Летнее время ] | новый онлайн-сервис число, сумма и дата прописью |
Метод квадратных корней для решения СЛАУ | ||||||||
---|---|---|---|---|---|---|---|---|
Название: Метод квадратных корней Раздел: Рефераты по математике Тип: контрольная работа Добавлен 08:40:32 17 апреля 2011 Похожие работы Просмотров: 1629 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать | |||||||
|
или в матричной форме
— столбец свободных членов и столбец неизвестных соответственно.
Если матрица А неособенная, т.е.
то система (1.1) имеет единственное решение. В этом случае решение системы (1.1) с теоретической точки зрения не представляет труда. Значения неизвестных xi (i=1,2,…n) могут быть получены по известным формулам Крамера
крамер квадратный корень матрица
где матрица Ai получается из матрицы А заменой ее i-го столбца столбцом свободных членов.
Но такой способ решения линейной системы с n неизвестными приводит к вычислению n + 1 определителей порядка n, что представляет собой весьма трудоемкую операцию при сколько-нибудь большом числе n.
Применяемые в настоящее время методы решения линейных систем можно разбить на две группы: точные и приближенные.
Точными методами называются такие методы, которые в предположении, что вычисления ведутся точно (без округлений), приводят к точным значениям неизвестных xi . Так как на практике все вычисления ведутся с округлениями, то и значения неизвестных, полученные точным методом, неизбежно будут содержать погрешности. К точным методам относятся, например, метод Гаусса, метод квадратных корней.
Приближенными методами называются такие методы, которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение системы (x1 , x2 , …, xn ) лишь с заданной точностью. Точное решение системы в этих случаях может быть получено теоретически как результат бесконечного процесса. К приближенным методам относятся метод простой итерации, метод Зейделя и др. Каждый из этих методов не всегда является сходящимся в применении к конкретному классу систем линейных уравнений.
Данная контрольная работа имеет следующую структуру: в начале рассматривается математическая постановка задачи для метода квадратных корней при решении систем линейных алгебраических уравнений. Затем производится реализация данного метода с помощью вычислительных средств ЭВМ, а именно прикладной программой Matlab 6.5. На примере реализации нескольких тестовых задач проводится анализ точности данного метода, а именно когда наиболее эффективно применять метод квадратных корней при решении систем линейных алгебраических уравнений. Анализ проводится на основе матрицы А (ее мерности, разреженности, обусловленности. Результаты, полученные на основе метода квадратных корней, приведены в конце данной работы. Также в работе представлен графический материал. По окончании проведения исследования работа завершается логическим заключением.
Метод квадратных корней используется для решения линейной системы
у которой матрица А симметрическая, т.е.
Метод является более экономным и удобным по сравнению с решением систем общего вида.
Решение системы осуществляется в два этапа.
Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:
|
А = Т¢ Т,
.
Перемножая матрицы T¢ и T и приравнивая матрице A, получим следующие формулы для определения tij :
|
После того, как матрица Т найдена, систему (1.2) заменяем двумя эквивалентными ей системами с треугольными матрицами
|
Обратный ход. Записываем в развернутом виде системы (1.5):
Отсюда последовательно находим
При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.
Заметим, что при действительных aij могут получиться чисто мнимые tij . Метод применим и в этом случае.
Для изучения данного метода было выбрано программное обеспечение: Matlab 6.5, в операционной системе WindowsXPProfessional. На этапе проектирования была создана программа Square (‘квадрат’). Входными переменными для данной программы является матрица A и соответствующая ей матрица B. Результатом выполнения данной программы является матрица X (выходная переменная), которая является решением системы линейных алгебраических уравнений.
Ниже описан алгоритм реализации метода квадратных корней на языке программирования в среде Matlab 6.5:
A=input(‘Введите матрицу A=’);
if i * — b (x * — полученное решение). Для этого рассмотрим разного рода матрицы:
— влияние мерности матрицы А;
Рассмотрим матрицы мерности 2´2, 3´3, 4´4 и 5´5. Зададим матрицу мерностью 2´2:
, ей соответственно зададим , в результате выполнения программы получим решение:
X =
ε =
Зададим матрицу размерностью 3´3:
, ей соответственно зададим , в результате выполнения программы получим решение:
X =
ε =
Зададим матрицу размерностью 4´4:
, ей соответственно зададим , в результате выполнения программы получим решение:
X =
ε =
Зададим матрицу размерностью 5´5:
, ей соответственно зададим , в результате выполнения программы получим решение:
X =
ε =
Сравним полученные результаты, для этого проанализируем точность полученного решения. Результат мы можем оценить двумя способами и , где E – матрица, полученная в результате подстановки найденного решения в систему линейных алгебраических уравнений: Е=A*x-b. Проиллюстрируем результаты графически. Для этого была разработана программа в среде Matlab 6.5.
🔥 Видео
Математика без Ху!ни. Метод Гаусса.Скачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Решение системы уравнений методом Крамера.Скачать
2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)Скачать
Решение системы уравнений методом Крамера 2x2Скачать
Решение системы уравнений методом ГауссаСкачать
Графический метод решения систем линейных уравнений 7 классСкачать
Система линейных уравнений. Общее решение. Метод ГауссаСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Метод Гаусса решения систем линейных уравненийСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать
Матричный метод решения систем уравненийСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
Метод Ньютона (метод касательных) Пример РешенияСкачать
Как решают уравнения в России и СШАСкачать