Метод крамера для уравнений 4 порядка

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

Метод крамера для уравнений 4 порядка(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b(2)

где A -основная матрица системы:

Метод крамера для уравнений 4 порядка(3)

а x и b − векторы столбцы:

Метод крамера для уравнений 4 порядка

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A -1 . Тогда умножая тождество (2) слева на обратную матрицу A -1 , получим:

A -1 Ax=A -1 b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A -1 A=E), получим

x=A -1 b.(4)

Обратная матрица имеет следующий вид:

Метод крамера для уравнений 4 порядка(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

Метод крамера для уравнений 4 порядка
Метод крамера для уравнений 4 порядка

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Метод крамера для уравнений 4 порядка

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, . n матрицы A.

Видео:Решение системы уравнений методом Крамера 4x4Скачать

Решение системы уравнений методом Крамера 4x4

Примеры решения СЛУ методом Крамера

Пример 1. Решить следующую систему линейных уравнений методом Крамера:

Метод крамера для уравнений 4 порядка

Запишем ее в матричной форме: Ax=b, где

Метод крамера для уравнений 4 порядка.

Вычислим определитель основной матрицы A:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка.

Заменим столбец 1 матрицы A на вектор столбец b:

Метод крамера для уравнений 4 порядка.

Вычислим определитель матрицы A1:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка.

Заменим столбец 2 матрицы A на вектор столбец b:

Метод крамера для уравнений 4 порядка.

Вычислим определитель матрицы A2:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка.

Заменим столбец 3 матрицы A на вектор столбец b:

Метод крамера для уравнений 4 порядка.

Вычислим определитель матрицы A3:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка.

Решение системы линейных уравнений вычисляется так:

Метод крамера для уравнений 4 порядка
Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Метод крамера для уравнений 4 порядка

Запишем ее в матричной форме: Ax=b, где

Метод крамера для уравнений 4 порядка

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Метод крамера для уравнений 4 порядка

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на «−».

Метод крамера для уравнений 4 порядка

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Метод крамера для уравнений 4 порядка

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на «+».

Метод крамера для уравнений 4 порядка

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Метод крамера для уравнений 4 порядка

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Метод крамера для уравнений 4 порядка

Заменим столбец 1 матрицы A на вектор столбец b:

Метод крамера для уравнений 4 порядка

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Метод крамера для уравнений 4 порядка

Определитель матрицы равен произведению всех элементов главной диагонали:

Метод крамера для уравнений 4 порядка

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка
Метод крамера для уравнений 4 порядка

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка
Метод крамера для уравнений 4 порядка

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Метод крамера для уравнений 4 порядкаМетод крамера для уравнений 4 порядка
Метод крамера для уравнений 4 порядка

Решение системы линейных уравнений вычисляется так:

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод крамера для уравнений 4 порядка

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Пример решения методом Крамера

Решение находим с помощью калькулятора. Запишем систему в виде:

B T = (20,11,40,37)
Найдем главный определитель:
Минор для (1,1):

Найдем определитель для этого минора.
1,1 = 3∙(9∙2-9∙9)-10∙(2∙2-9∙1)+8∙(2∙9-9∙1)= -67
Минор для (2,1):

4,1 = 5∙(2∙9-9∙1)-3∙(4∙9-9∙1)+10∙(4∙1-2∙1)= -16
Главный определитель:
∆ = 2∙(-67)-1∙(-89)+2∙(-6)-3∙(-16) = -9
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 3-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 4-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Выпишем отдельно найденные переменные Х:

Пример №2 . Решение находим с помощью калькулятора. Запишем систему в виде:

Метод крамера для уравнений 4 порядка
A =
123
456
780

B T = (6,9,-6)
Главный определитель:
∆ = 1 • (5 • 0-8 • 6)-4 • (2 • 0-8 • 3)+7 • (2 • 6-5 • 3) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
623
956
-680

Найдем определитель полученной матрицы.
1 = 6 • (5 • 0-8 • 6)-9 • (2 • 0-8 • 3)+(-6 • (2 • 6-5 • 3)) = -54
x1 = -54/27 = -2
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
163
496
7-60

Найдем определитель полученной матрицы.
2 = 1 • (9 • 0-(-6 • 6))-4 • (6 • 0-(-6 • 3))+7 • (6 • 6-9 • 3) = 27
x2 = 27/27 = 1
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
126
459
78-6

Найдем определитель полученной матрицы.
3 = 1 • (5 • (-6)-8 • 9)-4 • (2 • (-6)-8 • 6)+7 • (2 • 9-5 • 6) = 54
x3 = 54/27 = 2
Выпишем отдельно найденные переменные Х
x1 = -54/27 = -2
x2 = 27/27 = 1
x3 = 54/27 = 2
Проверка.
1•-2+2•1+3•2 = 6
4•-2+5•1+6•2 = 9
7•-2+8•1+0•2 = -6

Пример №2 . Запишем систему в виде:

A =
2-112-5
1-1-50
3-2-2-5
7-5-9-1

B T = (1,0,3,-4)
Найдем главный определитель:
Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

Найдем определитель для этого минора.
1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Главный определитель:
∆ = 2 • (-72)-1 • 279+3 • 63-7 • (-45) = 81
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
1-112-5
0-1-50
3-2-2-5
-4-5-9-1

Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Определитель минора:
1 = 1 • (-72)-0 • 279+3 • 63-(-4 • (-45))
x1 = -63/81 = -0.78
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2112-5
10-50
33-2-5
7-4-9-1

Минор для (1,1):

1,1 =
0-50
3-2-5
-4-9-1

1,1 = 0 • (-2 • (-1)-(-9 • (-5)))-3 • (-5 • (-1)-(-9 • 0))+(-4 • (-5 • (-5)-(-2 • 0))) = -115
Минор для (2,1):

2,1 =
112-5
3-2-5
-4-9-1

2,1 = 1 • (-2 • (-1)-(-9 • (-5)))-3 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • (-5)-(-2 • (-5)))) = 408
Минор для (3,1):

3,1 =
112-5
0-50
-4-9-1

3,1 = 1 • (-5 • (-1)-(-9 • 0))-0 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • 0-(-5 • (-5)))) = 105
Минор для (4,1):

4,1 =
112-5
0-50
3-2-5

4,1 = 1 • (-5 • (-5)-(-2 • 0))-0 • (12 • (-5)-(-2 • (-5)))+3 • (12 • 0-(-5 • (-5))) = -50
Определитель минора:
2 = 2 • (-115)-1 • 408+3 • 105-7 • (-50)
x2 = 27/81 = 0.33
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
2-11-5
1-100
3-23-5
7-5-4-1

Минор для (1,1):

1,1 =
-100
-23-5
-5-4-1

Найдем определитель для этого минора.
1,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (0 • (-1)-(-4 • 0)))+(-5 • (0 • (-5)-3 • 0)) = 23
Минор для (2,1):

2,1 =
-11-5
-23-5
-5-4-1

2,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • (-5)-3 • (-5))) = -69
Минор для (3,1):

3,1 =
-11-5
-100
-5-4-1

3,1 = -1 • (0 • (-1)-(-4 • 0))-(-1 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • 0-0 • (-5))) = -21
Минор для (4,1):

4,1 =
-11-5
-100
-23-5

4,1 = -1 • (0 • (-5)-3 • 0)-(-1 • (1 • (-5)-3 • (-5)))+(-2 • (1 • 0-0 • (-5))) = 10
Определитель минора:
3 = 2 • 23-1 • (-69)+3 • (-21)-7 • 10
x3 = -18/81 = -0.22
Заменим 4-ый столбец матрицы А на вектор результата В.

4 =
2-1121
1-1-50
3-2-23
7-5-9-4

Минор для (1,1):

1,1 =
-1-50
-2-23
-5-9-4

1,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (-5 • (-4)-(-9 • 0)))+(-5 • (-5 • 3-(-2 • 0))) = 80
Минор для (2,1):

2,1 =
-1121
-2-23
-5-9-4

2,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 3-(-2 • 1))) = -303
Минор для (3,1):

3,1 =
-1121
-1-50
-5-9-4

3,1 = -1 • (-5 • (-4)-(-9 • 0))-(-1 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 0-(-5 • 1))) = -84
Минор для (4,1):

4,1 =
-1121
-1-50
-2-23

4,1 = -1 • (-5 • 3-(-2 • 0))-(-1 • (12 • 3-(-2 • 1)))+(-2 • (12 • 0-(-5 • 1))) = 43
Определитель минора:
4 = 2 • 80-1 • (-303)+3 • (-84)-7 • 43
x4 = -90/81 = -1.11
Выпишем отдельно найденные переменные Х
x1 = -63/81 = -0.78
x2 = 27/81 = 0.33
x3 = -18/81 = -0.22
x4 = -90/81 = -1.11
Проверка.
2•-0.78+-1•0.33+12•-0.22+-5•-1.11 = 1
1•-0.78+-1•0.33+-5•-0.22+0•-1.11 = 0
3•-0.78+-2•0.33+-2•-0.22+-5•-1.11 = 3
7•-0.78+-5•0.33+-9•-0.22+-1•-1.11 = -4

Пример №3 . Запишем систему в виде:

A =
21-1
1-22
311

B T = (-1,-3,-8)
Главный определитель:
∆ = 2 • (-2 • 1-1 • 2)-1 • (1 • 1-1 • (-1))+3 • (1 • 2-(-2 • (-1))) = -10 = -10
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
-11-1
-3-22
-811

1 = -1 • (-2 • 1-1 • 2)-(-3 • (1 • 1-1 • (-1)))+(-8 • (1 • 2-(-2 • (-1)))) = 10
x1 = 10/-10 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2-1-1
1-32
3-81

2 = 2 • (-3 • 1-(-8 • 2))-1 • (-1 • 1-(-8 • (-1)))+3 • (-1 • 2-(-3 • (-1))) = 20
x2 = 20/-10 = -2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
21-1
1-2-3
31-8

3 = 2 • (-2 • (-8)-1 • (-3))-1 • (1 • (-8)-1 • (-1))+3 • (1 • (-3)-(-2 • (-1))) = 30
x3 = 30/-10 = -3
Выпишем отдельно найденные переменные Х
x1 = 10/-10 = -1
x2 = 20/-10 = -2
x3 = 30/(-10) = -3
Проверка.
2•-1+1•-2+-1•-3 = -1
1•-1+-2•-2+2•-3 = -3
3•-1+1•-2+1•-3 = -8

Пример №4 . Запишем систему в виде:

A =
1-11
43-2
2-15

B T = (0,-4,11)
Главный определитель:
∆ = 1 • (3 • 5-(-1 • (-2)))-4 • (-1 • 5-(-1 • 1))+2 • (-1 • (-2)-3 • 1) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
0-11
-43-2
11-15

1 = 0 • (3 • 5-(-1 • (-2)))-(-4 • (-1 • 5-(-1 • 1)))+11 • (-1 • (-2)-3 • 1) = -27
x1 = -27/27 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
101
4-4-2
2115

2 = 1 • (-4 • 5-11 • (-2))-4 • (0 • 5-11 • 1)+2 • (0 • (-2)-(-4 • 1)) = 54
x2 = 54/27 = 2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
1-10
43-4
2-111

3 = 1 • (3 • 11-(-1 • (-4)))-4 • (-1 • 11-(-1 • 0))+2 • (-1 • (-4)-3 • 0) = 81
x3 = 81/27 = 3
Выпишем отдельно найденные переменные Х
x1 = -27/27 = -1
x2 = 54/27 = 2
x3 = 81/27 = 3
Проверка.
1•-1+-1•2+1•3 = 0
4•-1+3•2+-2•3 = -4
2•-1+-1•2+5•3 = 11

Пример №5 . Запишем матрицу в виде:

A =
122
2-21
31-1

Главный определитель:
∆ = 1 • (-2 • (-1)-1 • 1)-2 • (2 • (-1)-1 • 2)+3 • (2 • 1-(-2 • 2)) = 27

Пример №6 . При решении системы линейных уравнений с квадратной матрицей коэффициентов А можно применять формулы Крамера, если:

  • столбцы матрицы А линейно независимы;
  • определитель матрицы А не равен нулю;

Пример №7 . Дана система трех линейных уравнений с тремя неизвестными. Найти ее решение с помощью формул Крамера. Выполнить проверку полученного решения.
-75x 1 + 35 x 2 + 25 x 3 = -4,5
25x 1 — 70x 2 + 25 x 3 = -20
15x 1 + 10x 2 — 5 5 x 3 = -30

  • Решение
  • Видеоинструкция

Решение получаем через калькулятор. Запишем систему в виде:

B T = (-4.5,-20,-30)
Главный определитель:
∆ = -75∙(-70∙(-55)-10∙25)-25∙(35∙(-55)-10∙25)+15∙(35∙25-(-70∙25))= -176250 = -176250
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
1 = -4.5∙(-70∙(-55)-10∙25)-(-20∙(35∙(-55)-10∙25))+(-30∙(35∙25-(-70∙25)))= -138450

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
2 = -75∙(-20∙(-55)-(-30∙25))-25∙(-4.5∙(-55)-(-30∙25))+15∙(-4.5∙25-(-20∙25))= -157875

Заменим 3-ый столбец матрицы А на вектор результата В .

Выпишем отдельно найденные переменные Х

📽️ Видео

Система 4x4. Решение по правилу Крамера.Скачать

Система 4x4. Решение по правилу Крамера.

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Метод Крамера Пример РешенияСкачать

Метод Крамера Пример Решения

Как вычислить определитель матрицы четвертого порядка | Высшая математикаСкачать

Как вычислить определитель матрицы четвертого порядка | Высшая математика

2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать

2 минуты на формулы Крамера ➜ Решение систем уравнений методом Крамера

Линейная алгебра: матрицы, определители, метод Крамера. Высшая математикаСкачать

Линейная алгебра: матрицы, определители, метод Крамера. Высшая математика

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

Формулы КРАМЕРАСкачать

Формулы КРАМЕРА

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в ExcelСкачать

Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в Excel

Линейная алгебра, 8 урок, Метод КрамераСкачать

Линейная алгебра, 8 урок, Метод Крамера

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.
Поделиться или сохранить к себе: