Метод интервалов для уравнений с одним корнем

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Метод интервалов, примеры, решения

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Видео:Алгебра 9. Урок 7 - Неравенства. Метод интервалов - основные фактыСкачать

Алгебра 9. Урок 7 - Неравенства. Метод интервалов - основные факты

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f ( x ) 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥ ). Здесь f ( x ) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

  • произведение линейных двучленов с коэффициентом 1 при переменной х ;
  • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

( x + 3 ) · ( x 2 − x + 1 ) · ( x + 2 ) 3 ≥ 0 ,

( x — 2 ) · ( x + 5 ) x + 3 > 0 ,

( x − 5 ) · ( x + 5 ) ≤ 0 ,

( x 2 + 2 · x + 7 ) · ( x — 1 ) 2 ( x 2 — 7 ) 5 · ( x — 1 ) · ( x — 3 ) 7 ≤ 0 .

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

  • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
  • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
  • определяем знаки выражения f ( x ) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
  • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале ( a , b ) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей ( − ∞ , a ) и ( a , + ∞ ) .

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x — 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: ( − ∞ , − 1 ) , ( − 1 , 5 ) и ( 5 , + ∞ ) .

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток ( − ∞ , − 1 ) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t − 1 , и так как − 1 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t 5 .

Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 0 и t − 5 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке ( − ∞ , − 1 ) .

Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t — 5 t + 1 будет положительным. Это значит, что значение выражения x — 5 x + 1 будет положительным при любом значении x из промежутка ( − ∞ , − 1 ) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».

Видео:Решение квадратных неравенств методом интервалов. 8 класс.Скачать

Решение квадратных неравенств методом интервалов. 8 класс.

Нахождение нулей числителя и знаменателя

Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

Рассмотрим дробь x · ( x — 0 , 6 ) x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · ( x − 0 , 6 ) = 0 и x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 = 0 .

В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.

Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , ( x 2 + 2 · x + 7 ) 2 = 0 , ( x + 5 ) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения — 5 . Это нули знаменателя.

0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Определение знаков на интервалах

Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

Рассмотрим это утверждение на примере.

Возьмем неравенство x 2 — x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число — 3 . Получаем два промежутка на числовой прямой ( − ∞ , − 3 ) и ( − 3 , + ∞ ) .

Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 — x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.

Из первого промежутка ( − ∞ , − 3 ) возьмем − 4 . При x = − 4 имеем ( — 4 ) 2 — ( — 4 ) + 4 ( — 4 ) + 3 = — 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « — ».

Для промежутка ( − 3 , + ∞ ) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 — 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».

Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».

Теперь обратимся к примерам.

Возьмем неравенство ( x — 2 ) · ( x — 3 ) 3 · ( x — 4 ) 2 ( x — 1 ) 4 · ( x — 3 ) 5 · ( x — 4 ) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.

Метод интервалов для уравнений с одним корнем

Нули знаменателя отметим пустыми точками.

Метод интервалов для уравнений с одним корнем

Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

Метод интервалов для уравнений с одним корнем

Теперь расставим точки на промежутках. Крайний правый промежуток ( 4 , + ∞ ) будет знак + .

Метод интервалов для уравнений с одним корнем

Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения ( x − 4 ) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале ( 3 , 4 ) будет знак минус.

Метод интервалов для уравнений с одним корнем

Переходим к интервалу ( 2 , 3 ) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям ( x − 3 ) 3 и ( x − 3 ) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.

Метод интервалов для уравнений с одним корнем

Точка с координатой 2 – это нуль числителя. Степень выражения х — 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

Метод интервалов для уравнений с одним корнем

У нас остался последний интервал ( − ∞ , 1 ) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения ( x − 1 ) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

Метод интервалов для уравнений с одним корнем

Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

x + 3 — 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 — 3 4 ( x — 1 ) 2 · x — 2 3 5 · ( x — 12 )

в любой точке интервала 3 — 3 4 , 3 — 2 4 .

Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Решение иррациональных неравенств методом интервалов

Разделы: Математика

Учащиеся сельских школ не имеют возможности обучаться в специализированных классах или в классах с углубленным изучением математики, поэтому с детьми, которым нравится математика, мы более глубоко изучаем темы, не вошедшие в обязательную программу, но знания которых позволяют им успешно справиться с заданиями ЕГЭ и тем самым без проблем поступить в ВУЗы и продолжить образование. Одной из таких тем является “Решение иррациональных уравнений и неравенств”. Если решение иррациональных уравнений в некоторых школьных учебниках рассматривается, то решение иррациональных неравенств нет. Я хочу предложить вам разработку урока по теме “Решение иррациональных неравенств методом интервалов”, который я проводила для учащихся 9–10-х классов.

Для изучения выбрала этот метод, т.к. при его использовании повторяется решение иррациональных уравнений.

ХОД УРОКА

I. Приветствие учителя, обоснование темы и цели урока.

Тема, с которой я вас хочу познакомить, поможет при сдаче ЕГЭ и непременно понадобится вам для продолжения образования. А в том, что вы захотите его продолжить, я ничуть не сомневаюсь. Надеюсь, что наше сотрудничество будет полезным и для вас и для меня.

Я желаю вам успехов в сегодняшней работе и хочу привести вам слова великого Микеланджело: “Если бы люди знали, как много я тружусь, чтобы добиться мастерства, они перестали бы считать меня таким уж талантливым”. Слайд 1.

Действительно, только упорный труд приводит нас к успеху. Мне бы очень хотелось, чтобы на сегодняшнем уроке вы это почувствовали. Кто из вас сейчас может с уверенностью сказать: “Я знаю все досконально и могу без труда решать иррациональные неравенства методом интервалов?” Пожалуй, никто. Я, например, готовясь к сегодняшнему уроку, еще много нового открыла для себя, и хочу этим поделиться с вами.

Открываем тетради, записываем дату и тему урока. Слайд 2.

Тема: Решение иррациональных неравенств методом интервалов

Цель урока:

  1. Усвоить алгоритм решения иррациональных неравенств методом интервалов.
  2. Научиться решать иррациональные неравенства с применением алгоритма. Слайд 3

II. Итак, перейдем к реализации нашей цели:

Вспомним определение иррационального неравенства: Слайд 4.

Иррациональным называют неравенства, в которых переменные входят под знак корня.

Совместная работа учителя и учащихся при разборе решения иррациональных неравенств методом интервалов.

Решим неравенства: Слайд 5

1)Метод интервалов для уравнений с одним корнем

2)Метод интервалов для уравнений с одним корнем

3) Метод интервалов для уравнений с одним корнем

Разберем решение неравенств: Слайды 6–9.

1. Метод интервалов для уравнений с одним корнемравносильно Метод интервалов для уравнений с одним корнем

Шаг 1. Рассмотрим иррациональную функцию Метод интервалов для уравнений с одним корнеми найдем область определения

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем— область определения

Шаг 2. Вычислим нули функции

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем— нуль функции

Шаг 3. На координатной прямой отмечаем нуль функции принадлежащий области определения. Получается два промежутка: [5;6) и (6;+Метод интервалов для уравнений с одним корнем). Определяем знак функции на каждом промежутке. Выписываем промежуток, на котором Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Ответ: Метод интервалов для уравнений с одним корнем

2. Метод интервалов для уравнений с одним корнемравносильно Метод интервалов для уравнений с одним корнем

Шаг 1. Рассмотрим иррациональную функцию Метод интервалов для уравнений с одним корнем, найдем область определения

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем— область определения

Шаг 2. Вычислим нули функции Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем— нуль функции

Шаг 3. На координатной прямой отмечаем нуль функции, принадлежащий области определения. Получаем два промежутка [-7;2) и (2;+Метод интервалов для уравнений с одним корнем). Определяем знак функции на каждом промежутке. Выписываем промежуток на котором Метод интервалов для уравнений с одним корнем.

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Ответ: Метод интервалов для уравнений с одним корнем

3. Метод интервалов для уравнений с одним корнем

Шаг 1. Рассмотрим иррациональную функцию Метод интервалов для уравнений с одним корнем, найдем область определения

Метод интервалов для уравнений с одним корнемМетод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнеми Метод интервалов для уравнений с одним корнемобласть определения.

Шаг 2. Вычислим нули функции

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем
Метод интервалов для уравнений с одним корнем
Метод интервалов для уравнений с одним корнем

-1; 1; 2 – нули функции

Шаг 3. На координатной прямой отмечаем нули функции, принадлежащие области определения, получается два промежутка (-Метод интервалов для уравнений с одним корнем;-1] и [2;+Метод интервалов для уравнений с одним корнем). Определяем знак функции на каждом промежутке и выписываем промежуток на котором Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Метод интервалов для уравнений с одним корнем

Ответ: Метод интервалов для уравнений с одним корнеми Метод интервалов для уравнений с одним корнем

III. Итак, мы рассмотрели с вами решение трех неравенств. Вы проследили порядок выполнения заданий. Какие вопросы появились по ходу объяснения? Если нет вопросов, то попробуйте сами сформулировать алгоритм решения иррационального неравенства методом интервала. (учащиеся сами формулируют этапы решения иррационального неравенства). Затем на экран проецируется алгоритм, и, учащиеся проговаривают этапы решения, особое внимание уделяется третьему этапу.

Алгоритм решения иррациональных неравенств. Слайд 10

  1. Рассмотрим иррациональную функцию; найдем область определения функции.
  2. Вычислим нули функции.
  3. На координатной прямой:
  • отметим нули функции, принадлежащие области определения;
  • определим знак функции на каждом промежутке;
  • с учетом знака неравенства выпишем ответ.

Сейчас мы перейдем к очень ответственному моменту, вы будете самостоятельно решать задания с применением приведенного алгоритма. Я предлагаю вам двигаться в своем собственном темпе.

(Во время самостоятельной работы проходит по рядам и смотрит, как ребята справляются с заданиями, выделяет для себя группу контроля. Если возникает необходимость дает незначительные консультации на местах)

IV. Задания для самостоятельной работы: Слайд 11

1. Метод интервалов для уравнений с одним корнем

2. Метод интервалов для уравнений с одним корнем

3. Метод интервалов для уравнений с одним корнем

V. Затем на экран проецируется пошаговая проверка. За каждый правильный шаг, учащиеся ставят себе плюс. Каждое задание оценивается отдельно.

Проверяем: Слайд 12

1 неравенство: Метод интервалов для уравнений с одним корнем

1 шаг Метод интервалов для уравнений с одним корнем

2 шаг Метод интервалов для уравнений с одним корнем

3 шаг Метод интервалов для уравнений с одним корнем

2 неравенствоМетод интервалов для уравнений с одним корнем

1 шаг Метод интервалов для уравнений с одним корнеми Метод интервалов для уравнений с одним корнем

2 шаг Метод интервалов для уравнений с одним корнем

3 шаг Метод интервалов для уравнений с одним корнем

3 неравенство Метод интервалов для уравнений с одним корнем

1 шаг Метод интервалов для уравнений с одним корнем

2 шаг Метод интервалов для уравнений с одним корнеми Метод интервалов для уравнений с одним корнем

3 шаг Метод интервалов для уравнений с одним корнем

На экран проецируем критерии оценки. Слайд 13

  • 5 баллов – задание выполнено полностью и верно.
  • 4 балла – задание верно выполнено на первом и втором шаге. Допущена ошибка в вычислениях на третьем шаге.
  • 3 балла — задание верно выполнено на первом шаге, вычислительная ошибка на втором шаге.
  • В остальных случаях – 2 балла.

VI. Затем каждый ученик получает лист самоконтроля, на котором дано полное решение всех трех неравенств, и с его помощью, устраняет ошибки, допущенные в своей работе.

VII. Подводятся итоги урока и дается задание на дом с ответами. Cлайд 14

1. Метод интервалов для уравнений с одним корнемОтвет Метод интервалов для уравнений с одним корнем

2. Метод интервалов для уравнений с одним корнемОтвет Метод интервалов для уравнений с одним корнем

3. Метод интервалов для уравнений с одним корнемОтвет Метод интервалов для уравнений с одним корнем

Видео:МЕТОД ИНТЕРВАЛОВ с Нуля + ДЗ (Задания 15 ЕГЭ 2024 по Математике Профиль)Скачать

МЕТОД ИНТЕРВАЛОВ с Нуля + ДЗ (Задания 15 ЕГЭ 2024 по Математике Профиль)

Метод интервалов, решение неравенств

Метод интервалов для уравнений с одним корнем

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

Метод интервалов для уравнений с одним корнем

где x — переменная,

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Видео:МЕТОД ИНТЕРВАЛОВ (решение неравенства)Скачать

МЕТОД ИНТЕРВАЛОВ (решение неравенства)

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax 2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два различных корня;
  3. D 2 + bx + c.

Метод интервалов для уравнений с одним корнем

Если требуется найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c больше нуля, то этот числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если нужно найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c меньше нуля — это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток. А если строгое — не входят.

Обучение на курсах по математике в онлайн-школе Skysmart сделает сложные темы понятными, а высокий балл на экзаменах — достижимым!

Видео:О кратности корней в методе интерваловСкачать

О кратности корней в методе интервалов

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, 2 + bx + c из левой части квадратного неравенства.

Изобразить координатную прямую и при наличии корней отметить их на ней.
Метод интервалов для уравнений с одним корнем

Если неравенство строгое, нужно отметить корни пустыми (выколотыми) точками. Если нестрогое — обычными точками. Именно эти точки разбивают координатную ось на промежутки.

Метод интервалов для уравнений с одним корнем

  • Определить, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге нашли нули) или на всей числовой прямой (если нулей нет). И проставить над этими промежутками + или − в соответствии с определенными знаками.
  • Если квадратное неравенство со знаком > или ≥ — наносим штриховку над промежутками со знаками +.

    Если неравенство со знаком 2 + 4x — 5, его корнями являются числа -5 и 1, они разбивают числовую ось на три промежутка: (-∞, -5), (-5, 1) и (1, +∞).

    Определим знак трехчлена x 2 + 4x — 5 на промежутке (1, +∞). Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Можно брать любое значение переменной, главное — чтобы вычисления были простыми. В нашем случае, возьмем x = 2. Подставим его в трехчлен вместо переменной x:

    • 2 2 + 4 * 2 — 5 = 4 + 8 — 5 = 7.

    7 — положительное число. Это значит, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак плюс.

    Определим знаки на оставшихся двух промежутках. Начнем с интервала (-5, 1). Из этого интервала можем взять x = 0 и вычислить значение квадратного трехчлена при этом значении переменной:

    • 0 2 + 4 * 0 — 5 = 0 + 0 — 5 = -5.

    Так как -5 — отрицательное число, то на этом интервале все значения трехчлена будут отрицательными. Так мы определили знак минус.

    Осталось определиться со знаком на промежутке (-∞, -5). Возьмем x = -6, подставляем:

    • (-6) 2 + 4 * (-6) — 5 = 36 — 24 — 5 = 7.

    Следовательно, искомый знак — плюс.

    Можно расставить знаки быстрее, если запомнить эти факты:

    Видео:Решение квадратных неравенств | МатематикаСкачать

    Решение квадратных неравенств | Математика

    Плюс или минус: как определить знаки

    Можно сделать вывод о знаках по значению старшего коэффициента a:

    если a > 0, последовательность знаков: +, −, +,

    если a 0, последовательность знаков: +, +,

    если a 2 — 7 не имеет корней и на промежутке (−∞, +∞) его значения отрицательны, так как коэффициент при x 2 есть отрицательное число -4, и свободный член -7 тоже отрицателен.

    • Когда квадратный трехчлен при D > 0 имеет два корня, то знаки его значений на промежутках чередуются. Это значит, что достаточно определить знак на одном из трех промежутков и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей: +, −, + или −, +, −.
    • Если квадратный трехчлен при D = 0 имеет один корень, то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. Это значит, что достаточно определить знак над одним из них и над другим поставить такой же. При этом получится, либо +, +, либо −, −.
    • Когда квадратный трехчлен корней не имеет (D

    Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

    Пример 1. Решить неравенство методом интервалов: x^2 — 5x + 6 ≥ 0.



      Разложим квадратный трехчлен на множители.
      Метод интервалов для уравнений с одним корнем

    Неравенство примет вид:

    Проанализируем два сомножителя:

    Первый: х — 3. Этот сомножитель может поменять знак при х = 3, значит при х 0 принимает положительные значения: х — 3 > 0.

    Второй: х — 2. Для этого сомножителя такая «знаковая» точка: х = 2.

    Вывод: знак произведения (х — 3) * (х — 2) меняется только при переходе переменной через значения х = 3 и х = 2.

    В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

  • Построим чертеж.
    Метод интервалов для уравнений с одним корнем
  • Рассмотрим интервалы в том же порядке, как пишем и читаем: слева направо.

    Отобразим эти данные на чертеже:

    Метод интервалов для уравнений с одним корнем

    2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

    • (25 — 3) (25 — 2) = 22*23 = 506 > 0

    Вывод: при х > 3 верно неравенство (х — 3) * (х — 2) > 0. Внесем эти данные в чертеж.

    Метод интервалов для уравнений с одним корнем
    Исходное неравенство: (х — 3) * (х — 2) ≥ 0.

    Если (х — 3) * (х — 2) > 0:

    Если (х — 3) (х — 2) = 0 — при х1 = 3, х2 = 2.

    Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

    Метод интервалов для уравнений с одним корнем

    Ответ: х ≤ 0, х ≥ 3.

    Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

    📹 Видео

    ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать

    ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнем

    Неравенства с модулем | Математика | TutorOnlineСкачать

    Неравенства с модулем | Математика | TutorOnline

    УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

    УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

    Неравенства. Метод интервалов | Математика ЕГЭ для 10 класса | УмскулСкачать

    Неравенства. Метод интервалов | Математика ЕГЭ для 10 класса | Умскул

    УРАВНЕНИЯ С МОДУЛЕМ. Метод интервалов для решения уравнений.Скачать

    УРАВНЕНИЯ С МОДУЛЕМ. Метод интервалов для решения уравнений.

    иррациональные неравенства методом интервалов 1Скачать

    иррациональные неравенства методом интервалов 1

    Метод интервалов. Решение неравенств, учёт кратности корнейСкачать

    Метод интервалов. Решение неравенств, учёт кратности корней

    Профильный ЕГЭ 2023. Задача 14. Неравенства. Метод интервалов. 10 классСкачать

    Профильный ЕГЭ 2023. Задача 14. Неравенства. Метод интервалов. 10 класс

    ✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

    ✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин
  • Поделиться или сохранить к себе: