Статья посвящена реализации алгоритма Гаусса для решения системы линейных алгебраических уравнений на языке Java.
- Теоретические сведения
- Реализация
- Вывод
- Implementing Gauss Seidel Method in Java
- Прямые методы линейной алгебры
- Метод исключения Гаусса
- Треугольные системы
- Прямая подстановка
- Обратная подстановка
- ( LU )-разложение
- Функция numpy.dot
- Замечание
- Замечание
- Выбор ведущего элемента
- ( LU )-разложение с частичным выбором
- 🔥 Видео
Видео:Решение системы уравнений методом ГауссаСкачать
Теоретические сведения
Рассмотрим математическую теорию. Система линейных уравнений может иметь одно решение, бесконечно много решений или же быть несовместной (не иметь решений). Не все методы решения СЛАУ могут справится с вторым случаем, когда система имеет бесконечно много решений. Например, метод Крамера и матричный метод не применимы, но метод Гаусса вполне можно использовать.
Алгоритм можно условно разделить на два этапа:
- Прямой ход
- Обратный ход
В первом этапе образуются нули ниже или выше главной диагонали, за счет использования элементарных преобразований матрицы. На втором этапе находят неизвестные начиная с конца. Подробную теорию можно посмотреть по ссылке: метод Гаусса, поэтому с теорией пожалуй все. Перейдем к реализации.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Реализация
Начнем с постановки задачи:
- нам нужно создать программу, реализующую систему линейных уравнений в виде некоторой структуры данных, используя приемы обобщенного программирования. Система должна содержать коэффициенты производного типа от класса Number (т.е. Float, Integer, Double и т.д.)
- Запрограммировать алгоритм, который получив на вход структуру данных системы образует нули ниже главной диагонали
Начнем с написания интерфейса, который должно реализовывать каждое уравнение:
Здесь все должно быть ясно, N некоторый наследник Number‘а, T — некоторый тип, реализующий данный интерфейс (рекурсивные дженерики). Метод addEquation(T item) позволяет прибавить каждый элемент уравнения item к каждому своему элементу. Остальные методы работают аналогично.
Теперь рассмотрим класс системы уравнений. Как видно в листинге ниже, он дженеризирован так же, как и интерфейс Gauss и содержит методы для удобного доступа к приватному списку содержащих в себе уравнений.
Теперь можно приступать к реализации «частного случая» структуры уравнения. Создадим класс MyEquation, реализующий наш интерфейс. Пусть наследником Number‘а будет сверхточный класс Float (на практике лучше брать Double). Обратите внимание, что в методе addEquation(MyEquation item) используется объект класса ListIterator, позволяющий изменять элементы перебираемого списка.
Теперь имеем полноценную структуру данных, реализующую систему уравнений. Составим алгоритм который будет принимать некоторый объект, реализующий интерфейс Gauss, затем вызывая нужные методы приведет матрицу к нужному виду.
Алгоритм простой, найти нужный коэффициент, домножить на него i-ю строку (i=0..n-1), и прибавить ее к j-й строке (j=i..n). Заметьте, алгоритм не знает как именно реализуются методы findCoefficient, mul и addEquation, это придает коду бОльшую гибкость, т.к. при потребности изменить способы манипуляции уравнениями (строками), будут изменены только реализации трех вышеупомянутых методов, а главный алгоритм останется нетронутым.
Почти все. Осталось запустить это все в методе main:
Запустим это чудо, что бы проверить корректность работы…
Это все. Исходники можно скачать на github’е.
Видео:VB.net Vs С++. СЛАУ Метод ГауссаСкачать
Вывод
Метод Гаусса не очень поддается обобщенному программированию (как видите обратный ход выполнен отдельно), однако вышла своеобразная реализация которая, надеюсь, поможет кому то лучше разобраться в искусстве использования интерфейсов и дженериков.
Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать
Implementing Gauss Seidel Method in Java
Gauss-Seidel (also known as successive displacement method) is a mathematical computational method mainly used to find the solution of a System of Linear Algebra. Ever heard of the Jacobi Method? Well, the Gauss-Seidel is nothing but a better version of the Jacobi.
Example :
A basic mathematical algorithm for the Gauss Seidel:
Given a set of n equations and n unknowns:
If the diagonal elements are non-zero, each equation is rewritten for the corresponding unknown, that is, the first equation is rewritten with x1 on the left hand side, the second equation is rewritten with x2 on the left hand side and so on as follows:
. These equations can be re-written in the form as:
Hence, for any row i ;
Note: Gauss-Seidel is applicable to strictly diagonally dominant or symmetric positive definite.
In short, for a linear system of equations, say:
Deduced formula:
In terms of matrices, the definition of Gauss-Seidel:
Here, D represents the diagonal part of the matrix A, -L strictly lower triangle part of A, U strictly upper triangle part of A.
Programming algorithm:
- Take the number of variables in the equation and the values of the augmented matrix
(formed by appending the columns of the two given matrices) as the input. - Checking if the given augmented matrix is diagonally dominant.
- Attempting to transform the given augmented matrix into diagonally dominant. If proved otherwise, then an appropriate message returned to the user.
- Computing and printing the final result as well as the iterations.
Видео:Решение системы линейных уравнений методом ГауссаСкачать
Прямые методы линейной алгебры
Одной из основных задач вычислительной математики является проблема решения систем линейных алгебраических уравнений с вещественными ко- эффициентами. Для нахождения приближенного решения систем уравнений используются прямые и итерационные методы. Математический аппарат ли- нейной алгебры базируется на понятиях нормы вектора и матрицы, числа обусловленности. Рассматриваются классические методы исключения неиз- вестных, отмечаются особенности решения задач с симметричной веществен- ной матрицей.
Видео:Линейная алгебра, 9 урок, Метод ГауссаСкачать
Метод исключения Гаусса
Начнем с обсуждения того, как можно легко решать треугольные системы. Затем опишем приведение системы общего вида к треугольной форме при помощи преобразований Гаусса. И, наконец, учитывая то, что полученный метод ведет себя очень плохо на нетривиальном классе задач, рассмотрим концепцию выбора ведущих элементов.
Треугольные системы
Рассмотрим следующую треугольную ( 2times 2 )-систему: $$ begin l_ & 0 \ l_ & l_ end begin x_1\ x_2 end = begin b_1\ b_2 end $$
Если ( l_, l_ ne 0 ), то неизвестные могут быть определены последовательно: $$ begin x_1 &= b_1/l_,\ x_2 &= (b_2 — l_x_1)/l_ end $$
Это ( 2times 2 )-версия алгоритма, известного как прямая подстановка. Общую процедуру получаем, разрешая ( i )-е уравнение системы ( Lx = b ) относительно ( x_i ): $$ x_i = left( b_i — sum_^ l_ x_j right)/l_. $$
Если вычисления выполнить для ( i ) от ( 1 ) до ( n ), то будут получены все компоненты вектора ( x ). Заметим, что на ( i )-м шаге необходимо скалярное произведение векторов ( L(i,1:i-1) ) и ( x(1:i-1) ). Так как ( b_i ) содержится только в формуле для ( x_i ), мы можем записать ( x_i ) на месте ( b_i ).
Прямая подстановка
Предположим, что ( L in mathbb^ ) — нижняя треугольная матрица и ( b in mathbb^n ). Следующий код Python заменяет ( b ) на решение системы ( Lx = b ). Матрица ( L ) должна быть невырождена.
Аналогичный алгоритм для верхней треугольной системы ( Ux = b ) называется обратная подстановка. Вот формула для ( x_i ): $$ x_i = left( b_i — sum_^ u_ x_j right)/u_. $$ и снова ( x_i ) можно записать на месте ( b_i ).
Обратная подстановка
Если матрица ( U in mathbb^ ) верхняя треугольная и ( b in mathbb^n ), то следующий код Python заменяет ( b ) на решение системы ( Ux = b ). Матрица ( U ) должна быть невырождена.
Отметим, что при реализации формул прямой и обратной подстановки мы использовали срезы массивов (см. раздел ref). В первом алгоритме L[i,:i] означает, что берется из строки двумерного массива с индексом i все элементы с нулевого до i-1 -го включительно, а b[:i] — элементы массива b с индексами от 0 до i-1 включительно. Во втором алгоритме используются срезы U[i,i+1:] , содержащий от i+1 -го до последнего (включительно) элементы i -той строки, и b[i+1:] с элементами от i+1 -го до последнего (включительно). Кроме того использовалась функция dot модуля numpy , которая вычисляет скалярное произведение двух векторов. Таким образом, мы здесь использовали векторизованные вычисления.
( LU )-разложение
Как мы только что видели, треугольные системы решаются «легко». Идея метода Гаусса — это преобразование системы (1) в эквивалентную треугольную систему. Преобразование достигается соответствующих линейных комбинаций уравнений. Например, в системе $$ begin 3x_1 + 5x_2 &= 9,\ 6x_1 + 7x_2 &= 4, end $$ умножая ее первую строку на 2 и вычитая ее из второй части, мы получим $$ begin 3x_1 + 5x_2 &= 9,\ -3x_2 &= -14. end $$
Это и есть метод исключений Гаусса при ( n=2 ). Дадим полное описание этой важной процедуры, причем опишем ее выполнение на языке матричных разложений. Данный пример показывает, что алгоритм вычисляет нижнюю треугольную матрицу ( L ) и верхнюю треугольную матрицу ( U ) так, что ( A = LU ), т.е. $$ begin 3 & 5 \ 6 & 7 end = begin 1 & 0 \ 2 & 1 end begin 3 & 5 \ 0 & -3 end $$ Решение исходной задачи ( Ax = b ) находится посредством последовательного решения двух треугольных систем: $$ Ly = b, quad Ux = y quad Rightarrow Ax = LUx = Ly = b $$
Матрица преобразования Гаусса.
Чтобы получить разложение, описывающее исключение Гаусса, нам нужно иметь некоторое матричное описание процесса обнуления матрицы. Пусть ( n=2 ), тогда как ( x_1 ne 0 ) и ( tau = x_2/x_1 ), то $$ begin 1 & 0 \ -tau & 1 end begin x_1\ x_2 end = begin x_1\ 0 end $$ В общем случае предположим, что ( x in mathbb^n ) и ( x_k ne 0 ). Если $$ tau^ = [ underbrace_k, tau_, ldots, tau_n ], quad tau_i = frac quad i = k+1, k+2, ldots, n $$ и мы обозначим $$ begin tag M_k = I — tau^ e_k^T, end $$ где $$ begin e_k^T &= [underbrace_, 1, underbrace_],\ I &= [e_1, e_2 ldots, e_n] end $$ то $$ M_k x = begin 1 & dots & 0 & 0 & dots & 0 \ vdots & ddots & vdots & vdots & ddots & vdots \ 0 & dots & 1 & 0 & dots & 0 \ 0 & dots & -tau_ & 1 & dots & 0 \ vdots & ddots & vdots & vdots & ddots & vdots \ 0 & dots & -tau_n & 0 & dots & 1 end begin x_1\ vdots \ x_k \ x_ \ vdots \ x_n end = begin x_1\ vdots \ x_k \ 0\ vdots \ 0 end $$
Матрица ( M_k ) — это матрица преобразования Гаусса. Она является нижней унитреугольной. Компоненты ( tau_, tau_, ldots, tau_n ) — это множители Гаусса. Вектор ( tau^ ) называется вектором Гаусса.
Для реализации данных идей имеется функция, которая вычисляет вектор множителей. Если x — массив из n элементов и x[0] ненулевой, функция gauss возвращает вектор длины ( n-1 ), такой, что если M — матрица преобразования Гаусса, причем M[1:,1] = -gauss(x) и y = dot(M,x) , то y[1:] = 0 :
Применение матриц преобразовния Гаусса.
Умножение на матрицу преобразования Гаусса выполняется достаточно просто. Если матрица ( C in mathbb^ ) и ( M_k = I — tau^ e_k^T ), тогда преобразование вида $$ M_k C = (I — tau^ e_k^T)C = C — tau^ (e_k^T C) $$ осуществляет одноранговую модификацию. Кроме того, поскольку элементы вектора ( tau^ ) равны нулю от первого до ( k )-го равны нулю, то в каждой ( k )-ой строке матрицы ( C ) задействованы лишь элементы, начиная с ( k+1 )-го. Следовательно, если «C« — двумерный массив, задающий матрицу ( C ), и «M« задает ( n times n )-преобразование Гаусса ( M_1 ), причем «M[1:,1] = -t«, «t« — множитель Гаусса, соответствующий ( tau^ ), тогда следующая функция заменяет ( C ) на ( M_1C ):
Отметим, что если матрица M[k+1:,k] = -t , тогда обращение вида C[k. ] = gauss_app(C[k. ], t) заменяет ( C ) на ( M_kC )
Матрицы преобразовния Гаусса ( M_1, M_2, ldots, M_ ), как правило, можно подобрать так, что матрица ( M_M_ldots M_1A = U ) является верхней треугольной. Легко убедиться, что если ( M_k = I — tau^e_k^T ), тогда обратная к ней задается следующим выражением ( M_k^ = I + tau^ e_k^T ) и поэтому $$ begin tag A = LU, end $$ где $$ L = M_1^ M_2^ ldots M_^. $$
Очевидно, что ( L ) — это нижняя унитреугольная матрица. Разложение (3) называется ( LU )-разложением матрицы ( A ). Необходимо проверять ведущие элементы матрицы ( A ) (( a_ )) на нуль, чтобы избежать деления на нуль в функции gauss . Это говорит о том, что ( LU )-разложение может не существовать. Известно, что ( LU )-разложение матрицы ( A ) существует, если главные миноры матрицы ( A ) не равны нулю при этом оно единственно и ( det = u_ u_ cdots u_ ).
Рассмотрим пример при ( n=3 ):
Функция numpy.dot
Обратите внимание, что в приведенном примере мы использовали функцию dot модуля numpy , которая выполняет умножение матриц в «правильном смысле», в то время как выражение M1*A производит поэлементное умножение.
Обобщение этого примера позволяет представить ( k )-й шаг следующим образом:
- Мы имеем дело с матрицей ( A^ = M_cdots M_1A ), которая с ( 1 )-го по ( (k-1) )-й столбец является верхней треугольной.
- Поскольку мы уже получили нули в столбцах с ( 1 )-го по ( (k-1) )-й, то преобразование Гаусса можно применять только к столбцам с ( k )-го до ( n )-го. На самом деле нет необходимости применять преобразование Гаусса также и ( k )-му столбцу, так как мы знаем результат.
- Множители Гаусса, задающие матрицу ( M_k ) получаются по матрице ( A(k:n,k) ) и могут храниться в позициях, в которых получены нули.
С учетом сказанного выше мы можем написать следующую функцию:
Эта функция возвращает ( LU )-разложение матрицы ( A ). Где же храниться матрица ( L )? Дело в том, что если ( L = M_1^M_2^ ldots M_^ ), то элементы с ( (k+1) )-го до ( n )-го в ( k )-том столбце матрицы ( L ) равны множителям Гаусса ( tau_, tau_, ldots, tau_ ) соответственно. Этот факт очевиден, если посмотреть на произведение, задающее матрицу ( L ): $$ L = (I + tau^e_1^T cdots (I + tau^e_^T)) = I + sum_^ tau^e_k^T. $$ Поэтому элементы ( l_ = lu_ ) для всех ( i > k ). Здесь ( lu_ ) — элементы матрицы возвращаемой функцией lu .
После разложения матрицы ( A ) с помощью функции lu в возвращаемом массивы будут храниться матрицы ( L ) и ( U ). Поэтому мы можем решить систему ( Ax = b ), используя прямую и обратную подстановки описанные в разделе Треугольные системы:
Замечание
Отметим, что во всех представленных функциях мы выполняли явное преобразование входных параметров в массивы NumPy с элементами типа float . Это позволит правильно работать функциям в случае, если мы по ошибке создадим входные параметры не как массивы, а как списки.
Как известно метод Гаусса является прямым, т.е. дает точное решение системы линейных уравнений. Для проверки реализации решения системы линейных уравнений методом Гаусса мы можем написать следующую функцию:
Замечание
Здесь мы задали матрицу A системы и точное решение expected , на основе которых получили вектор правой части b = np.dot(A,x) . Для сравнения численного решения с точным используется функция np.linalg.norm . В случае вызова с одним аргументом вычисляется ( l_2 )-норма: ( | v |_2 = sqrt<sum_^n v_i^2> ).
Выбор ведущего элемента
Как уже упоминалось, ( LU )-разложение может не существовать. В методе Гаусса с выбором ведущего элемента на очередном шаге исключается неизвестное, при котором коэффициент по модулю является наибольшим. В этом случае метод Гаусса применим для любых невырожденных матриц (( det A ne 0 )).
Такая стратегия предполагает переупорядочивание данных в виде перестановки двух матричных строк. Для этого используются понятие перестановочной матрицы. Перестановочная матрица (или матрица перестановок) — это матрица, отличающаяся от единичной лишь перестановкой строк, например $$ P = begin 0 & 0 & 0 & 1\ 1 & 0 & 0 & 0\ 0 & 0 & 1 & 0\ 0 & 1 & 0 & 0 end. $$
Перестановочную матрицу нет необходимости хранить полностью. Гораздо более эффективно перестановочную матрицу можно представить в виде целочисленного вектора ( p ) длины ( n ). Один из возможных способов такого представления — это держать в ( p_k ) индекс столбца в ( k )-й строке, содержащий единственный элемент равный ( 1 ). Так вектор ( p = [4, 1, 3, 2] ) соответствует кодировке приведенной выше матрицы ( P ). Также возможно закодировать ( P ) указанием индекса строки в ( k )-ом столбце, содержащего ( 1 ), например, ( p = [2, 4, 3, 1] ).
Если ( P ) — это матрица перестановок, а ( A ) — некоторая матрица, тогда матрица ( AP ) является вариантом матрицы ( A ) с переставленными столбцами, а ( PA ) — вариантом матрицы ( A ) с переставленными строками.
Перестановочные матрицы ортогональны, и поэтому если ( P ) — перестановочная матрица, то ( P^ = P^T ).
В этом разделе особый интерес представляют взаимные перестановки. Такие перестановки осуществляют матрицы, получаемые простой переменой мест двух строк единичной матрицы, например $$ E = begin 0 & 0 & 0 & 1\ 0 & 1 & 0 & 0\ 0 & 0 & 1 & 0\ 1 & 0 & 0 & 0 end. $$
Взаимные перестановки могут использоваться для описания перестановок строк и столбцов матрицы. В приведенном примере порядка ( 4 times 4 ) матрица ( EA ) отличается от матрицы ( A ) перестановкой ( 1 )-й и ( 4 )-й строк. Аналогично матрица ( AE ) отличается от матрицы ( A ) перестановкой ( 1 )-го и ( 4 )-го столбцов.
Если ( P = E_n E_ cdots E_1 ) и каждая матрица ( E_k ) является единичной с переставленными ( k )-й и ( p_k )-й строками, то вектор ( p = [p_1, p_2, ldots, p_n] ) содержит всю необходимую информацию о матрице ( P ). Действительно, вектор ( x ) может быть замещен на вектор ( Px ) следующим образом: $$ begin mathbf & k = 1:n\ & x_k leftrightarrow x_
end $$ Здесь символ ( leftrightarrow ) обозначает «выполнение перестановки»: $$ x_k leftrightarrow x_
Leftrightarrow r = x_k, x_k = x_
, x_
= r. $$
Поскольку каждая матрица ( E_k ) является симметричной и ( P^T = E_1 E_2 cdots E_n ), то также можно выполнить замещение вектора ( x ) на вектор ( P^Tx ): $$ begin mathbf & k = n:1:-1\ & x_k leftrightarrow x_
end $$
Существуют разные стратегии выбора ведущего элемента. Мы остановимся на стратегии частичного выбора. Пусть матрица $$ A = begin 3 & 17 & 10 \ 2 & 4 & -2 \ 6 & 18 & -12 end. $$ Чтобы добиться наименьших множителей в первой матрице разложения по Гауссу с помощью взаимных перестановок строк, надо сделать элемент ( a_ ) наибольшим в первом столбце. Если ( E_1 ) — матрица взаимных перестановок, тогда $$ E_1 = begin 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 end. $$
Поэтому $$ E_1A = begin 6 & 18 & -12 \ 2 & 4 & -2 \ 3 & 17 & 10 end $$ и $$ M_1 = begin 1 & 0 & 0 \ -1/3 & 1 & 0 \ -1/2 & 0 & 1 end Rightarrow M_1E_1A = begin 6 & 18 & -12 \ 0 & -2 & 2 \ 0 & 8 & 16 end. $$
Теперь, чтобы получить наименьший множитель в матрице ( M_2 ), необходимо переставить ( 2 )-ю и ( 3 )-ю строки и т.д.
Пример иллюстрирует общую идею, основанную на перестановке строк. Обобщая эту идею, получим следующий алгоритм:
( LU )-разложение с частичным выбором
Если матрица ( E in mathbb^ ), то данный алгоритм вычисляет матрицы преобразования Гаусса ( M_1, M_2 ldots, M_ ) и матрицы взаимных перестановок ( E_1, E_2, ldots, E_ ), такие что матрица ( M_E_ cdots M_1E_1A = U ) является верхней треугольной. При этом нет множителей, превосходящих ( 1 ) по абсолютной величине. Подматрица ( [a_]_^k ) замещается на матрицу ( [u_]_^k ), ( k = 1, 2, ldots, n ). Подматрица ( [a_]_^n ) замещается на матрицу ( [m_]_^ ), ( k = 1, 2, ldots , n-1 ). Целочисленный вектор ( piv ) размера ( n-1 ) задает взаимные перестановки. В частности, матрица ( E_k ) переставляет строки ( k ) и ( piv_k ), ( k = 1, 2, ldots, n-1 ).
for ( k = 1:n )
- Зададим ( mu ), такое что ( k leq mu leq n ) и ( |a_| = max_|a_| )
- ( a_ leftrightarrow a_ ); ( piv_k = mu )
if ( a_ ne 0 )
Чтобы решить линейную систему ( Ax = b ) после вызова последнего алгоритма, мы должны
1. Вычислить вектор ( y = M_E_ cdots M_1E_1 b ). 2. Решить верхнюю треугольную систему ( Ux = y ).
🔥 Видео
МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать
12. Решение систем линейных уравнений методом ГауссаСкачать
12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать
Метод Гаусса решения систем линейных уравненийСкачать
Решение систем линейных уравнений, урок 4/5. Метод ГауссаСкачать
Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать
Решение системы уравнений методом Гаусса 4x4Скачать
Метод Гаусса решения систем линейных уравненийСкачать
6 способов в одном видеоСкачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать
Метод Гаусса Пример РешенияСкачать