Метод гаусса решения систем линейных уравнений java

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Метод Гаусса на Java

Статья посвящена реализации алгоритма Гаусса для решения системы линейных алгебраических уравнений на языке Java.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Теоретические сведения

Рассмотрим математическую теорию. Система линейных уравнений может иметь одно решение, бесконечно много решений или же быть несовместной (не иметь решений). Не все методы решения СЛАУ могут справится с вторым случаем, когда система имеет бесконечно много решений. Например, метод Крамера и матричный метод не применимы, но метод Гаусса вполне можно использовать.

Алгоритм можно условно разделить на два этапа:

  • Прямой ход
  • Обратный ход

В первом этапе образуются нули ниже или выше главной диагонали, за счет использования элементарных преобразований матрицы. На втором этапе находят неизвестные начиная с конца. Подробную теорию можно посмотреть по ссылке: метод Гаусса, поэтому с теорией пожалуй все. Перейдем к реализации.

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Реализация

Начнем с постановки задачи:

  • нам нужно создать программу, реализующую систему линейных уравнений в виде некоторой структуры данных, используя приемы обобщенного программирования. Система должна содержать коэффициенты производного типа от класса Number (т.е. Float, Integer, Double и т.д.)
  • Запрограммировать алгоритм, который получив на вход структуру данных системы образует нули ниже главной диагонали

Начнем с написания интерфейса, который должно реализовывать каждое уравнение:

Здесь все должно быть ясно, N некоторый наследник Number‘а, T — некоторый тип, реализующий данный интерфейс (рекурсивные дженерики). Метод addEquation(T item) позволяет прибавить каждый элемент уравнения item к каждому своему элементу. Остальные методы работают аналогично.

Теперь рассмотрим класс системы уравнений. Как видно в листинге ниже, он дженеризирован так же, как и интерфейс Gauss и содержит методы для удобного доступа к приватному списку содержащих в себе уравнений.

Теперь можно приступать к реализации «частного случая» структуры уравнения. Создадим класс MyEquation, реализующий наш интерфейс. Пусть наследником Number‘а будет сверхточный класс Float (на практике лучше брать Double). Обратите внимание, что в методе addEquation(MyEquation item) используется объект класса ListIterator, позволяющий изменять элементы перебираемого списка.

Теперь имеем полноценную структуру данных, реализующую систему уравнений. Составим алгоритм который будет принимать некоторый объект, реализующий интерфейс Gauss, затем вызывая нужные методы приведет матрицу к нужному виду.

Алгоритм простой, найти нужный коэффициент, домножить на него i-ю строку (i=0..n-1), и прибавить ее к j-й строке (j=i..n). Заметьте, алгоритм не знает как именно реализуются методы findCoefficient, mul и addEquation, это придает коду бОльшую гибкость, т.к. при потребности изменить способы манипуляции уравнениями (строками), будут изменены только реализации трех вышеупомянутых методов, а главный алгоритм останется нетронутым.

Почти все. Осталось запустить это все в методе main:

Запустим это чудо, что бы проверить корректность работы…

Метод гаусса решения систем линейных уравнений java

Это все. Исходники можно скачать на github’е.

Видео:Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Вывод

Метод Гаусса не очень поддается обобщенному программированию (как видите обратный ход выполнен отдельно), однако вышла своеобразная реализация которая, надеюсь, поможет кому то лучше разобраться в искусстве использования интерфейсов и дженериков.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Метод Гаусса решения системы линейных уравнений

Дана система Метод гаусса решения систем линейных уравнений javaлинейных алгебраических уравнений (СЛАУ) с Метод гаусса решения систем линейных уравнений javaнеизвестными. Требуется решить эту систему: определить, сколько решений она имеет (ни одного, одно или бесконечно много), а если она имеет хотя бы одно решение, то найти любое из них.

Формально задача ставится следующим образом: решить систему:

Метод гаусса решения систем линейных уравнений java

где коэффициенты Метод гаусса решения систем линейных уравнений javaи Метод гаусса решения систем линейных уравнений javaизвестны, а переменные Метод гаусса решения систем линейных уравнений java— искомые неизвестные.

Удобно матричное представление этой задачи:

Метод гаусса решения систем линейных уравнений java

где Метод гаусса решения систем линейных уравнений java— матрица Метод гаусса решения систем линейных уравнений java, составленная из коэффициентов Метод гаусса решения систем линейных уравнений java, Метод гаусса решения систем линейных уравнений javaи Метод гаусса решения систем линейных уравнений java— векторы-столбцы высоты Метод гаусса решения систем линейных уравнений java.

Стоит отметить, что СЛАУ может быть не над полем действительных чисел, а над полем по модулю какого-либо числа Метод гаусса решения систем линейных уравнений java, т.е.:

Метод гаусса решения систем линейных уравнений java

— алгоритм Гаусса работает и для таких систем тоже (но этот случай будет рассмотрен ниже в отдельном разделе).

Видео:12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Алгоритм Гаусса

Строго говоря, описываемый ниже метод правильно называть методом «Гаусса-Жордана» (Gauss-Jordan elimination), поскольку он является вариацией метода Гаусса, описанной геодезистом Вильгельмом Жорданом в 1887 г. (стоит отметить, что Вильгельм Жордан не является автором ни теоремы Жордана о кривых, ни жордановой алгебры — всё это три разных учёных-однофамильца; кроме того, по всей видимости, более правильной является транскрипция «Йордан», но написание «Жордан» уже закрепилось в русской литературе). Также интересно заметить, что одновременно с Жорданом (а по некоторым данным даже раньше него) этот алгоритм придумал Класен (B.-I. Clasen).

Базовая схема

Кратко говоря, алгоритм заключается в последовательном исключении переменных из каждого уравнения до тех пор, пока в каждом уравнении не останется только по одной переменной. Если Метод гаусса решения систем линейных уравнений java, то можно говорить, что алгоритм Гаусса-Жордана стремится привести матрицу Метод гаусса решения систем линейных уравнений javaсистемы к единичной матрице — ведь после того как матрица стала единичной, решение системы очевидно — решение единственно и задаётся получившимися коэффициентами Метод гаусса решения систем линейных уравнений java.

При этом алгоритм основывается на двух простых эквивалентных преобразованиях системы: во-первых, можно обменивать два уравнения, а во-вторых, любое уравнение можно заменить линейной комбинацией этой строки (с ненулевым коэффициентом) и других строк (с произвольными коэффициентами).

На первом шаге алгоритм Гаусса-Жордана делит первую строку на коэффициент Метод гаусса решения систем линейных уравнений java. Затем алгоритм прибавляет первую строку к остальным строкам с такими коэффициентами, чтобы их коэффициенты в первом столбце обращались в нули — для этого, очевидно, при прибавлении первой строки к Метод гаусса решения систем линейных уравнений java-ой надо домножать её на Метод гаусса решения систем линейных уравнений java. При каждой операции с матрицей Метод гаусса решения систем линейных уравнений java(деление на число, прибавление к одной строке другой) соответствующие операции производятся и с вектором Метод гаусса решения систем линейных уравнений java; в некотором смысле, он ведёт себя, как если бы он был Метод гаусса решения систем линейных уравнений java-ым столбцом матрицы Метод гаусса решения систем линейных уравнений java.

В итоге, по окончании первого шага первый столбец матрицы Метод гаусса решения систем линейных уравнений javaстанет единичным (т.е. будет содержать единицу в первой строке и нули в остальных).

Аналогично производится второй шаг алгоритма, только теперь рассматривается второй столбец и вторая строка: сначала вторая строка делится на Метод гаусса решения систем линейных уравнений java, а затем отнимается от всех остальных строк с такими коэффициентами, чтобы обнулять второй столбец матрицы Метод гаусса решения систем линейных уравнений java.

И так далее, пока мы не обработаем все строки или все столбцы матрицы Метод гаусса решения систем линейных уравнений java. Если Метод гаусса решения систем линейных уравнений java, то по построению алгоритма очевидно, что матрица Метод гаусса решения систем линейных уравнений javaполучится единичной, что нам и требовалось.

Поиск опорного элемента (pivoting)

Разумеется, описанная выше схема неполна. Она работает только в том случае, если на каждом Метод гаусса решения систем линейных уравнений java-ом шаге элемент Метод гаусса решения систем линейных уравнений javaотличен от нуля — иначе мы просто не сможем добиться обнуления остальных коэффициентов в текущем столбце путём прибавления к ним Метод гаусса решения систем линейных уравнений java-ой строки.

Чтобы сделать алгоритм работающим в таких случаях, как раз и существует процесс выбора опорного элемента (на английском языке это называется одним словом «pivoting»). Он заключается в том, что производится перестановка строк и/или столбцов матрицы, чтобы в нужном элементе Метод гаусса решения систем линейных уравнений javaоказалось ненулевое число.

Заметим, что перестановка строк значительно проще реализуется на компьютере, чем перестановка столбцов: ведь при обмене местами двух каких-то столбцов надо запомнить, что эти две переменных обменялись местами, чтобы затем, при восстановлении ответа, правильно восстановить, какой ответ к какой переменной относится. При перестановке строк никаких таких дополнительных действий производить не надо.

К счастью, для корректности метода достаточно одних только обменов строк (т.н. «partial pivoting», в отличие от «full pivoting», когда обмениваются и строки, и столбцы). Но какую же именно строку следует выбирать для обмена? И правда ли, что поиск опорного элемента надо делать только тогда, когда текущий элемент Метод гаусса решения систем линейных уравнений javaнулевой?

Общего ответа на этот вопрос не существует. Есть разнообразные эвристики, однако самой эффективной из них (по соотношению простоты и отдачи) является такая эвристика: в качестве опорного элемента следует брать наибольший по модулю элемент, причём производить поиск опорного элемента и обмен с ним надо всегда, а не только когда это необходимо (т.е. не только тогда, когда Метод гаусса решения систем линейных уравнений java).

Иными словами, перед выполнением Метод гаусса решения систем линейных уравнений java-ой фазы алгоритма Гаусса-Жордана с эвристикой partial pivoting необходимо найти в Метод гаусса решения систем линейных уравнений java-ом столбце среди элементов с индексами от Метод гаусса решения систем линейных уравнений javaдо Метод гаусса решения систем линейных уравнений javaмаксимальный по модулю, и обменять строку с этим элементом с Метод гаусса решения систем линейных уравнений java-ой строкой.

Во-первых, эта эвристика позволит решить СЛАУ, даже если по ходу решения будет случаться так, что элемент Метод гаусса решения систем линейных уравнений java. Во-вторых, что весьма немаловажно, эта эвристика улучшает численную устойчивость алгоритма Гаусса-Жордана.

Без этой эвристики, даже если система такова, что на каждой Метод гаусса решения систем линейных уравнений java-ой фазе Метод гаусса решения систем линейных уравнений java— алгоритм Гаусса-Жордана отработает, но в итоге накапливающаяся погрешность может оказаться настолько огромной, что даже для матриц размера около Метод гаусса решения систем линейных уравнений javaпогрешность будет превосходить сам ответ.

Вырожденные случаи

Итак, если останавливаться на алгоритме Гаусса-Жордана с partial pivoting, то, утверждается, если Метод гаусса решения систем линейных уравнений javaи система невырождена (т.е. имеет ненулевой определитель, что означает, что она имеет единственное решение), то описанный выше алгоритм полностью отработает и придёт к единичной матрице Метод гаусса решения систем линейных уравнений java(доказательство этого, т.е. того, что ненулевой опорный элемент всегда будет находиться, здесь не приводится).

Рассмотрим теперь общий случай — когда Метод гаусса решения систем линейных уравнений javaи Метод гаусса решения систем линейных уравнений javaне обязательно равны. Предположим, что опорный элемент на Метод гаусса решения систем линейных уравнений java-ом шаге не нашёлся. Это означает, что в Метод гаусса решения систем линейных уравнений java-ом столбце все строки, начиная с текущей, содержат нули. Утверждается, что в этом случае эта Метод гаусса решения систем линейных уравнений java-ая переменная не может быть определена, и является независимой переменной (может принимать произвольное значение). Чтобы алгоритм Гаусса-Жордана продолжил свою работу для всех последующих переменных, в такой ситуации надо просто пропустить текущий Метод гаусса решения систем линейных уравнений java-ый столбец, не увеличивая при этом номер текущей строки (можно сказать, что мы виртуально удаляем Метод гаусса решения систем линейных уравнений java-ый столбец матрицы).

Итак, некоторые переменные в процессе работы алгоритма могут оказываться независимыми. Понятно, что когда количество Метод гаусса решения систем линейных уравнений javaпеременных больше количества Метод гаусса решения систем линейных уравнений javaуравнений, то как минимум Метод гаусса решения систем линейных уравнений javaпеременных обнаружатся независимыми.

В целом, если обнаружилась хотя бы одна независимая переменная, то она может принимать произвольное значение, в то время как остальные (зависимые) переменные будут выражаться через неё. Это означает, что, когда мы работаем в поле действительных чисел, система потенциально имеет бесконечно много решений (если мы рассматриваем СЛАУ по модулю, то число решений будет равно этому модулю в степени количества независимых переменных). Впрочем, следует быть аккуратным: надо помнить о том, что даже если были обнаружены независимые переменные, тем не менее СЛАУ может не иметь решений вовсе. Это происходит, когда в оставшихся необработанными уравнениях (тех, до которых алгоритм Гаусса-Жордана не дошёл, т.е. это уравнения, в которых остались только независимые переменные) есть хотя бы один ненулевой свободный член.

Впрочем, проще это проверить явной подстановкой найденного решения: всем независимыми переменным присвоить нулевые значения, зависимым переменным присвоить найденные значения, и подставить это решение в текущую СЛАУ.

Видео:Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Реализация

Приведём здесь реализацию алгоритма Гаусса-Жордана с эвристикой partial pivoting (выбором опорного элемента как максимума по столбцу).

На вход функции Метод гаусса решения систем линейных уравнений javaпередаётся сама матрица системы Метод гаусса решения систем линейных уравнений java. Последний столбец матрицы Метод гаусса решения систем линейных уравнений java— это в наших старых обозначениях столбец Метод гаусса решения систем линейных уравнений javaсвободных коэффициентов (так сделано для удобства программирования — т.к. в самом алгоритме все операции со свободными коэффициентами Метод гаусса решения систем линейных уравнений javaповторяют операции с матрицей Метод гаусса решения систем линейных уравнений java).

Функция возвращает число решений системы (Метод гаусса решения систем линейных уравнений java, Метод гаусса решения систем линейных уравнений javaили Метод гаусса решения систем линейных уравнений java) (бесконечность обозначена в коде специальной константой Метод гаусса решения систем линейных уравнений java, которой можно задать любое большое значение). Если хотя бы одно решение существует, то оно возвращается в векторе Метод гаусса решения систем линейных уравнений java.

В функции поддерживаются два указателя — на текущий столбец Метод гаусса решения систем линейных уравнений javaи текущую строку Метод гаусса решения систем линейных уравнений java.

Также заводится вектор Метод гаусса решения систем линейных уравнений java, в котором для каждой переменной записано, в какой строке должна она получиться (иными словами, для каждого столбца записан номер строки, в которой этот столбец отличен от нуля). Этот вектор нужен, поскольку некоторые переменные могли не «определиться» в ходе решения (т.е. это независимые переменные, которым можно присвоить произвольное значение — например, в приведённой реализации это нули).

Реализация использует технику partial pivoting, производя поиск строки с максимальным по модулю элементом, и переставляя затем эту строку в позицию Метод гаусса решения систем линейных уравнений java(хотя явную перестановку строк можно заменить обменом двух индексов в некотором массиве, на практике это не даст реального выигрыша, т.к. на обмены тратится Метод гаусса решения систем линейных уравнений javaопераций).

В реализации в целях простоты текущая строка не делится на опорный элемент — так что в итоге по окончании работы алгоритма матрица становится не единичной, а диагональной (впрочем, по-видимому, деление строки на ведущий элемент позволяет несколько уменьшить возникающие погрешности).

После нахождения решения оно подставляется обратно в матрицу — чтобы проверить, имеет ли система хотя бы одно решение или нет. Если проверка найденного решения прошла успешно, то функция возвращает Метод гаусса решения систем линейных уравнений javaили Метод гаусса решения систем линейных уравнений java— в зависимости от того, есть ли хотя бы одна независимая переменная или нет.

Видео:12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

Асимптотика

Оценим асимптотику полученного алгоритма. Алгоритм состоит из Метод гаусса решения систем линейных уравнений javaфаз, на каждой из которых происходит:

  • поиск и перестановка опорного элемента — за время Метод гаусса решения систем линейных уравнений javaпри использовании эвристики «partial pivoting» (поиск максимума в столбце)
  • если опорный элемент в текущем столбце был найден — то прибавление текущего уравнения ко всем остальным уравнениям — за время Метод гаусса решения систем линейных уравнений java

Очевидно, первый пункт имеет меньшую асимптотику, чем второй. Заметим также, что второй пункт выполняется не более Метод гаусса решения систем линейных уравнений javaраз — столько, сколько может быть зависимых переменных в СЛАУ.

Таким образом, итоговая асимптотика алгоритма принимает вид Метод гаусса решения систем линейных уравнений java.

При Метод гаусса решения систем линейных уравнений javaэта оценка превращается в Метод гаусса решения систем линейных уравнений java.

Заметим, что когда СЛАУ рассматривается не в поле действительных чисел, а в поле по модулю два, то систему можно решать гораздо быстрее — об этом см. ниже в разделе «Решение СЛАУ по модулю».

Более точная оценка числа действий

Для простоты выкладок будем считать, что Метод гаусса решения систем линейных уравнений java.

Как мы уже знаем, время работы всего алгоритма фактически определяется временем, затрачиваемым на исключение текущего уравнения из остальных.

Это может происходить на каждом из Метод гаусса решения систем линейных уравнений javaшагов, при этом текущее уравнение прибавляется ко всем Метод гаусса решения систем линейных уравнений javaостальным. При прибавлении работа идёт только со столбцами, начиная с текущего. Таким образом, в сумме получается Метод гаусса решения систем линейных уравнений javaопераций.

Видео:Линейная алгебра, 9 урок, Метод ГауссаСкачать

Линейная алгебра, 9 урок, Метод Гаусса

Дополнения

Ускорение алгоритма: разделение его на прямой и обратный ход

Добиться двукратного ускорения алгоритма можно, рассмотрев другую его версию, более классическую, когда алгоритм разбивается на фазы прямого и обратного хода.

В целом, в отличие от описанного выше алгоритма, можно приводить матрицу не к диагональному виду, а к треугольному виду — когда все элементы строго ниже главной диагонали равны нулю.

Система с треугольной матрицей решается тривиально — сначала из последнего уравнения сразу находится значение последней переменной, затем найденное значение подставляется в предпоследнее уравнение и находится значение предпоследней переменной, и так далее. Этот процесс и называется обратным ходом алгоритма Гаусса.

Прямой ход алгоритма Гаусса — это алгоритм, аналогичный описанному выше алгоритму Гаусса-Жордана, за одним исключением: текущая переменная исключается не из всех уравнений, а только из уравнений после текущего. В результате этого действительно получается не диагональная, а треугольная матрица.

Разница в том, что прямой ход работает быстрее алгоритма Гаусса-Жордана — поскольку в среднем он делает в два раза меньше прибавлений одного уравнения к другому. Обратный ход работает за Метод гаусса решения систем линейных уравнений java, что в любом случае асимптотически быстрее прямого хода.

Таким образом, если Метод гаусса решения систем линейных уравнений java, то данный алгоритм будет делать уже Метод гаусса решения систем линейных уравнений javaопераций — что в два раза меньше алгоритма Гаусса-Жордана.

Решение СЛАУ по модулю

Для решения СЛАУ по модулю можно применять описанный выше алгоритм, он сохраняет свою корректность.

Разумеется, теперь становится ненужным использовать какие-то хитрые техники выбора опорного элемента — достаточно найти любой ненулевой элемент в текущем столбце.

Если модуль простой, то никаких сложностей вообще не возникает — происходящие по ходу работы алгоритма Гаусса деления не создают особых проблем.

Особенно замечателен модуль, равный двум: для него все операции с матрицей можно производить очень эффективно. Например, отнимание одной строки от другой по модулю два — это на самом деле их симметрическая разность («xor»). Таким образом, весь алгоритм можно значительно ускорить, сжав всю матрицу в битовые маски и оперируя только ими. Приведём здесь новую реализацию основной части алгоритма Гаусса-Жордана, используя стандартный контейнер C++ «bitset»:

Как можно заметить, реализация стала даже немного короче, при том, что она значительно быстрее старой реализации — а именно, быстрее в Метод гаусса решения систем линейных уравнений javaраза за счёт битового сжатия. Также следует отметить, что решение систем по модулю два на практике работает очень быстро, поскольку случаи, когда от одной строки надо отнимать другую, происходят достаточно редко (на разреженных матрицах этот алгоритм может работать за время скорее порядка квадрата от размера, чем куба).

Если модуль произвольный (не обязательно простой), то всё становится несколько сложнее. Понятно, что пользуясь Китайской теоремой об остатках, мы сводим задачу с произвольным модулем только к модулям вида «степень простого». [ дальнейший текст был скрыт, т.к. это непроверенная информация — возможно, неправильный способ решения ]

Наконец, рассмотрим вопрос числа решений СЛАУ по модулю. Ответ на него достаточно прост: число решений равно Метод гаусса решения систем линейных уравнений java, где Метод гаусса решения систем линейных уравнений java— модуль, Метод гаусса решения систем линейных уравнений java— число независимых переменных.

Немного о различных способах выбора опорного элемента

Как уже говорилось выше, однозначного ответа на этот вопрос нет.

Эвристика «partial pivoting», которая заключалась в поиске максимального элемента в текущем столбце, работает на практике весьма неплохо. Также оказывается, что она даёт практически тот же результат, что и «full pivoting» — когда опорный элемент ищется среди элементов целой подматрицы — начиная с текущей строки и с текущего столбца.

Но интересно отметить, что обе эти эвристики с поиском максимального элемента, фактически, очень зависят от того, насколько были промасштабированы исходные уравнения. Например, если одно из уравнений системы умножить на миллион, то это уравнение почти наверняка будет выбрано в качестве ведущего на первом же шаге. Это кажется достаточно странным, поэтому логичен переход к немного более сложной эвристике — так называемому «implicit pivoting».

Эвристика implicit pivoting заключается в том, что элементы различных строк сравниваются так, как если бы обе строки были пронормированы таким образом, что максимальный по модулю элемент в них был бы равен единице. Для реализации этой техники надо просто поддерживать текущий максимум в каждой строке (либо поддерживать каждую строку так, чтобы максимум в ней был равен единице по модулю, но это может привести к увеличению накапливаемой погрешности).

Улучшение найденного ответа

Поскольку, несмотря на различные эвристики, алгоритм Гаусса-Жордана всё равно может приводить к большим погрешностям на специальных матрицах даже размеров порядка Метод гаусса решения систем линейных уравнений javaМетод гаусса решения систем линейных уравнений java.

В связи с этим, полученный алгоритмом Гаусса-Жордана ответ можно улучшить, применив к нему какой-либо простой численный метод — например, метод простой итерации.

Таким образом, решение превращается в двухшаговое: сначала выполняется алгоритм Гаусса-Жордана, затем — какой-либо численный метод, принимающий в качестве начальных данных решение, полученное на первом шаге.

Такой приём позволяет несколько расширить множество задач, решаемых алгоритмом Гаусса-Жордана с приемлемой погрешностью.

Видео:Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

Программная реализация метода Гаусса

Вычислительная схема метода Гаусса состоит из двух этапов. Первый этап заключается в приведении системы к трапециевидной. Этот этап называется прямым ходом. Второй этап — определение неизвестных — называется обратным ходом.

Прямой ход метода Гаусса состоит в последовательном исключении коэффициентов при неизвестных начиная с первого столбца.

Прямой ход реализуется по следующим формулам (индекс k в круглых скобках означает номер цикла — номер столбца).

Умножение k-й строки на число

Метод гаусса решения систем линейных уравнений java. (1)

Вычитание k-й строки из j-й строки

Метод гаусса решения систем линейных уравнений java. (2)

Метод гаусса решения систем линейных уравнений java. (3)

Обратный ход — вычисление неизвестных — реализуется по следующим формулам, начиная с последнего уравнения системы

Метод гаусса решения систем линейных уравнений java. (4)

Код C++

using namespace std;

cout «Poryadok: » > n;

double **a = new double *[n];

for (i = 0; i new double [n];

double **a1 = new double *[n];

for (i = 0; i new double [n];

double *b = new double [n];

double *x = new double [n];

cout «Vvedite koefficienty i svobodnye chleny » for (i = 1; i for (j = 1; j «a[ » «,» «]= » ;

for (k = 1; k // прямой ход

for (j = k + 1; j // формула (1)

for (i = k; i // формула (2)

b[j] = b[j] — d * b[k]; // формула (3)

for (k = n; k >= 1; k—) // обратный ход

for (j = k + 1; j // формула (4)

d = d + s; // формула (4)

x[k] = (b[k] — d) / a[k][k]; // формула (4)

cout «Korni sistemy: » for ( i = 1; i «x[» «]=» » » return 0;

🔥 Видео

VB.net Vs С++. СЛАУ Метод ГауссаСкачать

VB.net Vs С++. СЛАУ Метод Гаусса

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУ

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Решение систем линейных уравнений, урок 4/5. Метод ГауссаСкачать

Решение систем линейных уравнений, урок 4/5. Метод Гаусса

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

решение системы уравнений методом ГауссаСкачать

решение системы уравнений методом Гаусса

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений
Поделиться или сохранить к себе: