Рассмотрены приемы решения обыкновенных дифференциальных уравнений (ОДУ) с помощью модуля scipy.integrate языка Python
- Краткое описание модуля scipy.integrate
- Решение одного ОДУ
- Решение системы ОДУ
- 5++ способов в одну строку на Python решить первую задачу Проекта Эйлера
- Условие задачи
- 00 — Базовое решение
- 01 — Generator Expression. Выражение-генератор
- 01.a — List Comprehension. Выражение на основе списка
- 01.b — Set Comprehension. Выражение на основе множества
- 02 — Filter
- 03 — Map
- 04 — Reduce
- 05 — Однострочное решение на основе множества
- 05.a — Ещё одно однострочное решение на основе множества
- 05.b — И ещё одно однострочное решение на основе множества
- 05.c И последнее однострочное решение на основе множества
- Смотрим на скорость выполнения каждого однострочного решения
- Заключение
- Метод эйлера решения дифференциальных уравнений питон
- 🌟 Видео
Видео:Метод ЭйлераСкачать
Краткое описание модуля scipy.integrate
Модуль scipy.integrate имеет две функции ode() и odeint(), которые предназначены для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (т.е. задача Коши).
Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.
Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат
Видео:Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать
Решение одного ОДУ
Допустим надо решить диф. уравнение 1-го порядка
Получилось что-то такое:
Видео:Численное решение задачи Коши методом ЭйлераСкачать
Решение системы ОДУ
Пусть теперь мы хотим решить (автономную) систему диф. уравнений 1-го порядка
Выходной массив w состоит из двух столбцов — y1(t) и y2(t).
Также без труда можно построить фазовые траектории:
Видео:Решение ОДУ в PythonСкачать
5++ способов в одну строку на Python решить первую задачу Проекта Эйлера
Однажды меня посетила мысль, а что если попробовать решить первую задачу Проекта Эйлера всевозможными способами, но с условием, что решение должно быть в одну строку. В итоге получилось более пяти однострочных решений с применением Filter, Map, Reduce, Generator Expression и т.д. В этой статье я покажу то, к чему я пришёл.
Это моя первая статья. Стоит отнестись к ней настороженно. Уникальные решения будут оформлены в отдельные пункты. Менее уникальные — в подпункты.
Условие задачи
Если выписать все натуральные числа меньше 10, кратные 3 или 5, то получим 3, 5, 6 и 9. Сумма этих чисел равна 23.
Найдите сумму всех чисел меньше 1000, кратных 3 или 5.
00 — Базовое решение
Прежде чем перейти непосредственно к однострочным решениям, разумно было бы упомянуть сначала стандартное, классическое решение:
Перебираем последовательность чисел от 1 до 999. Если перебираемое число делится на 3 или на 5 без остатка от деления, то прибавляем каждое такое число в заранее объявленную переменную result .
01 — Generator Expression. Выражение-генератор
Числа из последовательности от 1 до 999, делящиеся на 3 или на 5 без остатка от деления, собираются в генератор. Затем функция sum() складывает содержимое генератора.
01.a — List Comprehension. Выражение на основе списка
В отличии от предыдущего, здесь выражение дополнительно помещается в список. Стоило упомянуть этот вариант, так как он довольно часто встречается в различных статьях.
01.b — Set Comprehension. Выражение на основе множества
Тоже, что и в предыдущем, но вместо списка здесь множество.
02 — Filter
Функция filter схожа по принципу работы с выражением-генератором. Функция лямбда применяется к каждому элементу последовательности чисел от 1 до 999. Все числа последовательности, делящиеся на 3 или на 5 без остатка от деления, возвращаются, затем суммируются функцией sum() .
03 — Map
Перебираемые числа последовательности от 1 до 999, делящиеся на 3 или 5 без остатка от деления, остаются без изменений, все остальные числа заменяются на ноль. Полученная последовательность суммируется функцией sum() .
04 — Reduce
Из всей подборки, этот вариант «очень не очень». Как по степени реализации, так и по времени выполнения(но об этом попозже).
Если в reduce указан инициализатор(в нашем случае ноль), то он становится накопителем. К нему по очереди прибавляются только те числа из последовательности от 1 до 999, которые делятся на 3 или на 5 без остатка от деления. Если из функции reduce убрать инициализатор ноль, то инициализатором станет крайний левый элемент последовательности.
05 — Однострочное решение на основе множества
Самое элегантное решение, как по красоте написания, так и по времени выполнения.
Последовательность чисел от 1 до 999, кратную трём, помещаем во множество и объединяем со множеством, содержащим в себе последовательность чисел от 1 до 999, кратную пяти. Содержимое, полученного множества суммируем функцией sum() .
05.a — Ещё одно однострочное решение на основе множества
Похожий вариант на предыдущий, но, если использовать фигурные скобки, то последовательность чисел от 1 до 999, кратную трём и последовательность чисел от 1 до 999, кратную пяти, нужно распаковывать.
05.b — И ещё одно однострочное решение на основе множества
Создаём множество, с последовательностью чисел от 1 до 999, кратную трём и присоединяем к нему последовательность чисел от 1 до 999, кратную пяти. Затем функцией sum() суммируем.
05.c И последнее однострочное решение на основе множества
По аналогии с предыдущими. Распаковываем последовательности чисел в списки. Складываем списки. Оборачиваем во множество. Затем суммируем функцией sum() .
Смотрим на скорость выполнения каждого однострочного решения
Если проверить скорость выполнения каждого однострочного решения в командной строке, при помощи timeit, получим следующие значения в микросекундах:
Методика расчёта: python -m timeit «выражение»
Быстрее всего справились с задачей последние четыре варианта.
Заключение
Всего получилось 5 уникальных + 5 не уникальных решений. Благодаря этой задаче у меня появилось более устойчивое понимание работы функций Filter, Map, Reduce. И если раньше я недоумевал, почему функцию Reduce убрали из основного модуля, то теперь я не сомневаюсь в правильности этого решения.
В статье я старался отойти от популярного шаблона повествования «точность на грани бесполезности». Где предложения набиты под завязку «тяжёлыми» терминами, а из знакомого там только союзы и предлоги. Не уверен, что у меня получилось.
Видео:Линейное дифференциальное уравнение Коши-ЭйлераСкачать
Метод эйлера решения дифференциальных уравнений питон
Variant 19 (Sukach Maxim, BS17-03)
Найдем
В итоге, наше решение принимает вид:
Метод Эйлера дает возможность приближенно выразить функцию теоретически с любой наперед заданной точностью. Суть метода Эйлера в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Метод Эйлера является методом 1-го порядка точности и называется методом ломаных.
Для вычисления используются следующие формулы:
Метод Эйлера и точное решение при x0 = 0, xf = 9, y0 = 1, h = 0.1
Метод Эйлера и точное решение при x0 = 0, xf = 3, y0 = 1, h = 0.1
Метод Эйлера и точное решение при x0 = 0, xf = 1, y0 = 1, h = 0.1
Усовершенствованный метод Эйлера
Суть усовершенствованного метода Эйлера в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Усовершенствованный метод Эйлера является методом 2-го порядка точности и называется модифицированным методом Эйлера.
Разница между данным методом и методом Эйлера минимальна и заключается в использовании следующих формул:
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 9, y0 = 1, h = 0.1
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 3, y0 = 1, h = 0.1
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 1, y0 = 1, h = 0.1
Классический метод Рунге-Кутты
Суть метода Рунге-Кутты в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Классический метод Рунге-Кутты является методом 4-го порядка точности и называется методом Рунге-Кутты 4-го порядка точности.
Ну и как обычно, формулы:
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 9, y0 = 1, h = 0.1
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 3, y0 = 1, h = 0.1
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 1, y0 = 1, h = 0.1
Сравнение методов для заданной задачи
Размер ошибки всех методов на промежутке [0, 9] с шагом 0.1
Размер ошибки всех методов на промежутке [0, 3] с шагом 0.1
Размер ошибки всех методов на промежутке [0, 1] с шагом 0.1
Очевидно что, классический метод Рунге-Кутты справляется с задачей аппроксимации в случае данного уравнения намного лучше чем Метод Эйлера и Усовершенствованный метод Эйлера.
График глобальной средней ошибки
Глобальная ошибка в зависимости от размера шага H на промежутке от 0.01 до 0.91 для x0 = 1, xf = 9
🌟 Видео
МЗЭ 2022 Численное решение дифференциальных уравнений. Неявный метод Эйлера. Ложкин С.А.Скачать
Решение системы дифференциальных уравнений методом ЭйлераСкачать
Метод Эйлера для дифурСкачать
Решение системы ОДУ в PythonСкачать
Решение ОДУ методом Эйлера (программа)Скачать
Метод Эйлера. Решение систем ДУСкачать
Численные методы решения ДУ: метод ЭйлераСкачать
Решение ОДУ 2 порядка в PythonСкачать
Пример решения задачи Коши методом Эйлера. Метод Эйлера с пересчетом.Скачать
01.02. Модель SIR. Численное решение системы дифференциальных уравнений с помощью SciPyСкачать
Дифференциальные уравнения. Задача Коши. Метод Эйлера.Скачать
МЗЭ 2022 Численное решение дифференциальных уравнений Метод Эйлера Ложкин С. А.Скачать
Дифференциальное уравнение. Формула ЭйлераСкачать