y ‘ = f ( x , y ) , ( 1 )
f ( x , y ) — заданная непрерывная функция в области D. Задача нахождения решения этого уравнения, удовлетворяющего начальному условию
называется задачей Коши.
Метод Эйлера
Пусть требуется найти решение задачи Коши (1)-(2) на отрезке [a,b].
Разобьем отрезок [a,b] на n равных частей точками
i = 0 , 1 , … , n , h = b − a n .
Заменяя в уравнении (1) производную разностным отношением, получим y 1 − y 0 h = f ( x 0 , y 0 ) . Перепишем последнее уравнение в виде
y 1 = y 0 + h · f ( x 0 , y 0 ) Повторяя этот процесс, получим приближенное решение задачи (1)-(2).
Таким образом, итерационная формула метода Эйлера имеет вид
x i + 1 = a + i · h , y i + 1 = y i + h · f ( x i , y i ) , i = 0 , 1 , … , n
Пример. Решить методом Эйлера дифференциальное уравнение
y ‘ = 3 s i n 2 y + x
с начальным условием y(0)=2 на отрезке [0,1] с шагом h=0,1.
Видео:Метод ЭйлераСкачать
Метод Эйлера для решения дифференциального уравнения
Дано дифференциальное уравнение dy / dx = f (x, y) с начальным условием y (x0) = y0. Найти его приближенное решение, используя метод Эйлера .
Метод Эйлера:
В математике и вычислительной науке метод Эйлера (также называется вперед
Метод Эйлера) — числовая процедура первого порядка для решения обыкновенного дифференциала
уравнения (ОДУ) с заданным начальным значением.
Рассмотрим дифференциальное уравнение dy / dx = f (x, y) с начальным условием y (x0) = y0
тогда последовательная аппроксимация этого уравнения может быть задана как:
where h = (x(n) – x(0)) / n
h indicates step size. Choosing smaller
values of h leads to more accurate results
and more computation time.
Пример :
/ * Программа CPP, чтобы найти приближение
обыкновенного дифференциального уравнения
используя метод Эйлера. * /
using namespace std;
// Рассмотрим дифференциальное уравнение
// dy / dx = (x + y + xy)
float func( float x, float y)
return (x + y + x * y);
// Функция для формулы Эйлера
void euler( float x0, float y, float h, float x)
Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Метод эйлера для решения дифференциальных уравнений си
Variant 19 (Sukach Maxim, BS17-03)
Найдем
В итоге, наше решение принимает вид:
Метод Эйлера дает возможность приближенно выразить функцию теоретически с любой наперед заданной точностью. Суть метода Эйлера в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Метод Эйлера является методом 1-го порядка точности и называется методом ломаных.
Для вычисления используются следующие формулы:
Метод Эйлера и точное решение при x0 = 0, xf = 9, y0 = 1, h = 0.1
Метод Эйлера и точное решение при x0 = 0, xf = 3, y0 = 1, h = 0.1
Метод Эйлера и точное решение при x0 = 0, xf = 1, y0 = 1, h = 0.1
Усовершенствованный метод Эйлера
Суть усовершенствованного метода Эйлера в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Усовершенствованный метод Эйлера является методом 2-го порядка точности и называется модифицированным методом Эйлера.
Разница между данным методом и методом Эйлера минимальна и заключается в использовании следующих формул:
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 9, y0 = 1, h = 0.1
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 3, y0 = 1, h = 0.1
Усовершенствованный Метод Эйлера и точное решение при
x0 = 0, xf = 1, y0 = 1, h = 0.1
Классический метод Рунге-Кутты
Суть метода Рунге-Кутты в пошаговом вычислении значений решения y=y(x) дифференциального уравнения вида y’=f(x,y) с начальным условием (x0;y0). Классический метод Рунге-Кутты является методом 4-го порядка точности и называется методом Рунге-Кутты 4-го порядка точности.
Ну и как обычно, формулы:
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 9, y0 = 1, h = 0.1
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 3, y0 = 1, h = 0.1
Классический метод Рунге-Кутты и точное решение при x0 = 0, xf = 1, y0 = 1, h = 0.1
Сравнение методов для заданной задачи
Размер ошибки всех методов на промежутке [0, 9] с шагом 0.1
Размер ошибки всех методов на промежутке [0, 3] с шагом 0.1
Размер ошибки всех методов на промежутке [0, 1] с шагом 0.1
Очевидно что, классический метод Рунге-Кутты справляется с задачей аппроксимации в случае данного уравнения намного лучше чем Метод Эйлера и Усовершенствованный метод Эйлера.
График глобальной средней ошибки
Глобальная ошибка в зависимости от размера шага H на промежутке от 0.01 до 0.91 для x0 = 1, xf = 9
🔥 Видео
Численное решение задачи Коши методом ЭйлераСкачать
МЗЭ 2022 Численное решение дифференциальных уравнений. Неявный метод Эйлера. Ложкин С.А.Скачать
Решение ОДУ методом Эйлера (программа)Скачать
Пример решения задачи Коши методом Эйлера. Метод Эйлера с пересчетом.Скачать
Дифференциальные уравнения. Задача Коши. Метод Эйлера.Скачать
Линейное дифференциальное уравнение Коши-ЭйлераСкачать
Дифференциальное уравнение. Формула ЭйлераСкачать
Численные методы решения ДУ: метод ЭйлераСкачать
Видеоурок "Системы диф. уравнений. Метод Эйлера"Скачать
МЗЭ 2022 Численное решение дифференциальных уравнений Метод Эйлера Ложкин С. А.Скачать
Метод Эйлера. Решение систем ДУСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Системы дифференциальных уравнений.Метод исключения.Метод Эйлера.Скачать
метод Эйлера для решения ОДУСкачать
Решение ОДУ методом Рунге-Кутта 4 порядка (программа)Скачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать