Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.
Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.
- Метод электронного баланса
- Ионно-электронный метод (метод полуреакций)
- Окислительно-восстановительные реакции в органической химии
- Определение степени окисления атомов в органических веществах
- Окисление и восстановление органических веществ
- Составление окислительно – восстановительных уравнений
- Уравнивание окислительно-восстановительных реакций с участием органических веществ методом электронного баланса. статья по химии (11 класс) по теме
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- 📺 Видео
Видео:Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКАСкачать
Метод электронного баланса
В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .
В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.
1) Составить схему реакции:
Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):
Найдем степень окисления элементов:
Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.
3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.
S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления
Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления
Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:
- Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
- Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.
Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:
4) Уравнять количества атомов элементов, не изменяющих степень окисления
Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.
Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.
По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.
В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .
Таким образом, серной кислоты надо взять 3 молекулы:
Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты
6H + + 3O -2 = 3H2O
Окончательный вид уравнения следующий:
Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.
Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать
Ионно-электронный метод (метод полуреакций)
Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.
При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).
При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:
H + — кислая среда, OH — — щелочная среда и H2O – нейтральная среда.
Пример 1.
Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.
1) Составить схему реакции:
Записать исходные вещества и продукты реакции:
2) Записать уравнение в ионном виде
В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:
SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O
3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.
В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:
MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O
Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :
SO3 2- + H2O — 2e — = SO4 2- + 2H +
4) Найти коэффициенты для окислителя и восстановителя
Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:
MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления
SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления
5) Просуммировать обе полуреакции
Предварительно умножая на найденные коэффициенты, получаем:
2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +
Сократив подобные члены, находим ионное уравнение:
2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O
6) Записать молекулярное уравнение
Молекулярное уравнение имеет следующий вид:
Пример 2.
Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.
В ионном виде уравнение принимает вид:
Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .
В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления
SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
Пример 3.
Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.
В ионном виде уравнение принимает вид:
В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.
Полуреакции имеют следующий вид:
MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления
SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления
Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:
Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.
Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции
Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать
Окислительно-восстановительные реакции в органической химии
Разделы: Химия
Окислительно-восстановительные процессы издавна интересовали химиков и даже алхимиков. Среди химических реакций, происходящих в природе, быту и технике, огромное множество составляют окислительно-восстановительные: сгорание топлива, окисление питательных веществ, тканевое дыхание, фотосинтез, порча пищевых продуктов и т.д. В таких реакциях могут участвовать как неорганические вещества, так и органические. Однако если в школьном курсе неорганической химии разделы, посвященные окислительно-восстановительным реакциям, занимают значительное место, то в курсе органической химии на этот вопрос обращено недостаточно внимания.
Что же представляют собой восстановительно-окислительные процессы?
Все химические реакции можно разделить на два типа. К первому относятся реакции, протекающие без изменения степени окисления атомов, входящих в состав реагирующих веществ.
Ко второму типу относятся все реакции, идущие с изменением степени окисления атомов, входящих в состав реагирующих веществ.
Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.
С современной точки зрения изменение степени окисления связано с оттягиванием или перемещением электронов. Поэтому наряду с приведенным можно дать и такое определение восстановительно-окислительных реакций: это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.
Рассмотрим основные положения, относящиеся к теории окислительно-восстановительных реакций.
1. Окислением называется процесс отдачи электроном атомом, молекулой или ионом электронов, степени окисления при этом повышаются.
2. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом, степень окисления при этом понижается.
3. Атомы, молекулы или ионы, отдающие электроны, называются восстановителями. Во время реакции они окисляются. Атомы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстанавливаются.
4. Окисление всегда сопровождается восстановлением; восстановление всегда связано с окислением, что можно выразить уравнениями.
Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов – окисления и восстановления. В этих реакциях число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем. При этом независимо от того, переходят ли электроны с одного атома на другой полностью или лишь частично оттягиваются к одному из атомов, условно говорят только об отдаче и присоединения электронов.
Окислительно-восстановительные реакции органических веществ – важнейшее свойство, объединяющее эти вещества. Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу.
Применение понятия «степени окисления» (СО) в органической химии очень ограничено и реализуется, прежде всего, при составлении уравнений окислительно-восстановительных реакций. Однако, учитывая, что более или менее постоянной состав продуктов реакции возможен только при полном окислении (горении) органических веществ, целесообразность расстановки коэффициентов в реакциях неполного окисления отпадает. По этой причине обычно ограничиваются составлением схемы превращений органических соединений.
Нам представляется важным указывать значение СО атома углерода при изучении всей совокупности свойств органических соединений. Систематизация сведений об окислителях, установление связи между строением органических веществ и их СО помогут научить учащихся [1, 2]:
— Выбирать лабораторные и промышленные окислители;
Находить зависимость окислительно-восстановительной способности органического вещества от его строения;
— Устанавливать связь между классом органических веществ и окислителем нужной силы, агрегатного состояния и механизма действия;
— Предсказывать условия проведения реакции и ожидаемые продукты окисления.
Определение степени окисления атомов в органических веществах
Степень окисления любого атома углерода в органическом веществе равна алгебраической сумме всех его связей с более электроотрицательных элементов (Cl, O, S,N, и др.), учитываемых со знаком «+», и связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-». При этом связи с соседними атомами углерода не учитываются [1].
Определим степени окисления атомов углерода в молекулах предельного углеводорода пропана и спирта этанола:
Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:
Насыщенный углеводород Ненасыщенный углеводород Спирт Альдегид (кетон) Карбоновая кислота CO+ HO.
Генетическая связь между классами органических соединений представляется здесь как ряд окислительно–восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений.
Изменение СО у атомов углерода в молекуле углерода в молекулах органических соединений приведены в таблице. Из данных таблицы видно, что при переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется. Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы. Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.
Окисление и восстановление органических веществ
Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ [1, 2]:
- кратных связей (именно поэтому так легко окисляются алкены, алканы, алкадиены);
- определенных функциональных групп – сульфидной -SH, гидроксильной –OH (фенольной и спиртовой), аминной — NH;
- активированных алкильных групп, расположенных по соседству с кратными связям, например пропен может быть окислен до непредельного альдегида акролеина (кислородом воздуха в присутствии водяных паров на висмут- молибденовых катализаторах):
- атомов водорода при атоме углерода, содержащем функциональную группу.
Сравним первичные, вторичные и третичные спирты по реакционной способности к окислению:
Первичные и вторичные спирты, имеющие атомы водорода при атоме углерода, несущем функциональную группу; окисляются легко: первые – до альдегидов, вторые до кетонов. При этом структура углеродного скелета исходного спирта сохраняется. Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета.
Существуют два подхода к определению степеней окисления элементов в органических веществах.
1. Вычисляют среднюю степень окисления атома углерода в молекуле органического соединения, например пропана.
Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).
Отметим, что формально дробные степени окисления, вычисленные таким образом, могут быть и в случае неорганических веществ. Например, в соединении КО (надпероксида калия) степень окисления кислорода равна – 1/2.
2. Определяют степень окисления каждого атома углерода, например в бутане.
В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+», и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-». При этом связи с атомами углерода не учитывают.
В качестве простейшего примера определим степень окисления углерода в молекуле метанола.
Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « — »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем:
Таким образом, степень окисления углерода в метаноле равна -2.
Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.
Рассмотрим цепочку превращений веществ:
При каталитическом дегидрировании этана получается этилен; продукт гидратации этилена – этанол; его окисление приведет к этаналю, а затем – к уксусной кислоте; при ее сгорании образуется углекислый газ и вода.
Определим степени окисления каждого атома углерода в молекулах перечисленных веществ.
Можно заметить, что в ходе каждого из этих превращений постоянно меняется степень окисления одного из атомов углерода. В направлении от этана к оксиду углерода (IV) происходит увеличение степени окисления атома углерода.
Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, их классифицируют в зависимости оттого, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).
Так, в реакции этанола с перманганатом калия этанол будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этанола.
Составление окислительно – восстановительных уравнений
Для составления уравнений окислительно- восстановительных реакций используют как метод электронного баланса, так и метод полуреакций (электронно — ионный метод). Рассмотрим несколько примеров окислительно- восстановительных реакций с участием органических веществ 3.
1. Горение н-бутана.
Схема реакции имеет вид:
Составим полное уравнение химической реакции методом баланса.
Среднее значение степени окисления углерода в н-бутане:
Степень окисления углерода в оксиде углерода(IV) равна +4.
Составим схему электронного баланса:
C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:
Коэффициенты для этого уравнения можно найти и другим методом, о котором уже упоминалось. Рассчитав степени окисления каждого из атомов углерода, видим, что они различаются:
В этом случае схема электронного баланса будет выглядеть так:
Так как в ходе горения н-бутана в его молекулах разрушаются все химические связи, то в данном случае первый подход вполне оправдан, тем более что схема электронного баланса, составленная вторым способом, несколько сложнее.
2. Реакция окисления этилена раствором перманганата калия в нейтральной среде на холоду (реакция Вагнера).
Расставим коэффициенты в уравнении реакции методом электронного баланса.
Полное уравнение химической реакции будет выглядеть так:
Для определения коэффициентов можно воспользоваться и методом полуреакций. Этилен окисляется в этой реакции до этиленгликоля, а перманганат – ионы восстанавливаются с образованием диоксида марганца.
Схемы соответствующих полуреакций:
Суммарное электронно-ионное уравнение:
3. Реакции окисления глюкозы перманганата калия в кислой среде.
А. Метод электронного баланса.
Рассчитаем степени окисления каждого из атомов углерода в молекуле глюкозы:
Схема электронного баланса усложняется по сравнению с предыдущими примерами:
Б. Метод полуреакций в данном случае выглядит следующим образом:
Суммарное ионное уравнение:
Молекулярное уравнение реакции глюкозы перманганататом калия:
В органической химии целесообразно использовать определение окисления как увеличение содержания кислорода или уменьшение содержания водорода [4]. Восстановление в таком случае определяется как уменьшение содержания кислорода или увеличение содержания водорода. При таком определении последовательное окисление органических веществ можно представить следующей схемой:
Практика показывает, что подбор коэффициентов в реакциях окисления органических веществ вызывает определенные затруднения, так как приходится иметь дело с весьма непривычными степенями окисления.[4]. Некоторые учащиеся из-за отсутствия опыта продолжают отождествлять степень окисления с валентностью и, вследствие этого, неправильно определяют степень окисления углерода в органических соединениях. Валентность углерода в этих соединениях всегда равна четырем, а степень окисления может принимать различные значения (от -3 до +4, в том числе дробные значения). Непривычным моментом при окислении органических веществ является нулевая степень окисления атома углерода в некоторых сложных соединениях. Если преодолеть психологический барьер, составление таких уравнений не представляет сложности, например:
Степень окисления атома углерода в сахарозе равна нулю. Переписываем схему реакции с указанием степеней окисления атомов, которые их меняют:
Составляем электронные уравнения и находим коэффициенты при окислителе и восстановителе и продуктах их окисления и восстановления:
Подставим полученные коэффициенты в схему реакции:
Оставшиеся коэффициенты подбираем в такой последовательности: KSO, HSO, HO. Окончательное уравнение имеет вид:
Многие вузы включают в билеты для вступительных экзаменов задания по подбору коэффициентов в уравнениях ОВР электронным методом(методом полуреакций). Если в школе и уделяется хоть какое-то внимание этому методу, то, в основном при окислении неорганических веществ. Попробуем применить метод полуреакций для выше приведенного примера окисления сахарозы перманганатом калия в кислой среде.
Первое преимущество этого метода заключается в том, что нет необходимости сразу угадывать и записывать продукты реакции. Они достаточно легко определяются в ходе уравнения. Окислитель в кислой среде наиболее полно проявляет свои окислительные свойства, например, анион MnOпревращается в катион Mn, легко окисляющиеся органические окисляются до CO.
Запишем в молекулярном виде превращения сахарозы:
В левой части не хватает 13 атомов кислорода, чтобы устранить это противоречие, прибавим 13 молекул HO.
Левая часть теперь содержит 48 атомов водорода, они выделяются в виде катионов Н:
Теперь уравняем суммарные заряды справа и слева:
Схема полуреакций готова. Составление схемы второй полуреакции обычно не вызывает затруднений:
Объединим обе схемы:
Сократив обе части уравнения на 65 HO и 240 Н, получим сокращенное ионное уравнение окислительно-восстановительной реакции:
Упражнения. Расставьте коэффициенты методом электронного баланса в уравнениях реакций:
б) СН+ О СО+ НО
в) СНСНОН + KMnO СНСООН + MnO + КОН + НО
г) СНСН+ KMnO+ HSO СНСООН + MnSO+ KSO+ HO.
д) СН— СН=СН + КМnО +НО СН— СН(ОН)-СН(ОН) +. +.
Упражнения. Расставьте коэффициенты методом электронного баланса:
а) СНСН+ KMnO+ HSO СНСООН + СО+ MnSO+ KSO+ HO.
12MnO+ 96Н + 5е+ 5CH+ 20HO12Mn+ 48HO + 5CНО+5СО+ 60 Н
5СНСН+12KMnO+18HSO
5СНСООН+5СО+12MnSO+6KSO+28HO.
в) CHO + KCrO+ HSO CO + Cr (SO)+ KSO+ HO.
г) CHOH+ KCrO+ HSO НСООН + Cr (SO)+ KSO+ HO.
д) СНNН + O CO + N+ HO
1. Матч Дж. Органическая химия. Реакции, механизмы и структура: В 4т./ Пер. с англ.- М.: Мир, 1987-1988.
2. Карцова А.А, Левкин А. Н. Окислительно-восстановительные реакции в органической химии // Химия в школе. — 2004. — №2. – С.55-61.
3. Хомченко Г.П., Савостьянова К.И. Окислительно-восстановительные реакции: Пособие для учащихся . М.- : Просвещение , 1980.
4. Шарафутдинов В. Окислительно-восстановительные реакции в органической химии // Башкортостан уkытыусыhы. — 2002. — №5. – С.79 -81.
Видео:Как расставить коэффициенты в органических ОВР? | Екатерина СтрогановаСкачать
Уравнивание окислительно-восстановительных реакций с участием органических веществ методом электронного баланса.
статья по химии (11 класс) по теме
В статье обсуждается возможность описания ОВР с участием органических веществ с помощью метода электронного баланса. Также даны рекомендации по составлению уравнений реакций.
Видео:Самый легкий способ уравнять ОВР в органике!Скачать
Скачать:
Вложение | Размер |
---|---|
Uravnivanie_OVR_statya.doc | 35 КБ |
Видео:Учимся составлять электронный баланс/овр/8классСкачать
Предварительный просмотр:
Уравнивание окислительно-восстановительных реакций с участием органических веществ методом электронного баланса.
Реакции окисления органических веществ часто встречаются в базовом курсе химии. При этом, их запись обычно представляется в виде несложных схем, часть из которых дает лишь общее представление о превращениях веществ различных классов друг в друга, не учитывая конкретных условий протекания процесса (например, реакции среды), которые влияют на состав продуктов реакции. Между тем, требования ЕГЭ по химии в части С таковы, что возникает необходимость записи именно уравнения реакции с определенным набором коэффициентов. В данной работе приведены рекомендации по методике составления таких уравнений.
Для описания окислительно-восстановительных реакций применяют два метода: метод электронно-ионных уравнений и метод электронного баланса. Не останавливаясь на первом, отметим, что метод электронного баланса изучается в курсе химии основной школы и поэтому вполне применим для продолжения изучения предмета.
Уравнения электронного баланса прежде всего описывают процессы окисления и восстановления атомов. Кроме этого, специальные множители указывают на коэффициенты перед формулами веществ, содержащих атомы, которые участвовали в процессах окисления и восстановления. Это, в свою очередь, позволяет находить остальные коэффициенты.
Пример 1. Окисление толуола перманганатом калия в кислой среде.
C 6 H 5 -CH 3 + KMnO 4 + H 2 SO 4 = …
Известно, что боковые метильные радикалы аренов обычно окисляются до карбоксила, поэтому в данном случае образуется бензойная кислота. Перманганат калия в кислой среде восстанавливается до двузарядных катионов марганца. Учитывая наличие сернокислотной среды, продуктами будут сульфат марганца (II) и сульфат калия. Кроме того, при окислении в кислой среде образуется вода. Теперь схема реакции выглядит так:
C 6 H 5 -CH 3 + KMnO 4 + H 2 SO 4 = C 6 H 5 COOH + MnSO 4 + K 2 SO 4 + H 2 O
Из схемы видно, что изменяется состояние атома углерода в метильном радикале, а также атома марганца. Степени окисления марганца определяются по общим правилам подсчета: в перманганате калия +7, в сульфате марганца +2. Степени окисления атома углерода можно легко определить исходя из структурных формул метильного радикала и карбоксила. Для этого нужно рассмотреть смещение электронной плотности исходя из того, что по электроотрицательности углерод занимает промежуточное положение между водородом и кислородом, а связь С-С формально считается неполярной. В метильном радикале атом углерода притягивает три электрона от трех атомов водорода, поэтому его степень окисления равна -3. В карбоксиле атом углерода отдает два электрона карбонильному атому кислорода и один электрон атому кислорода гидроксильной группы, поэтому степень окисления атома углерода +3.
Уравнение электронного баланса:
Mn +7 + 5e = Mn +2 6
Перед формулами веществ, содержащих марганец необходим коэффициент 6, а перед формулами толуола и бензойной кислоты – 5.
5C 6 H 5 -CH 3 +6 KMnO 4 + H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + K 2 SO 4 + H 2 O
Далее уравниваем число атомов калия:
5C 6 H 5 -CH 3 +6 KMnO 4 + H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + H 2 O
И число атомов серы:
5C 6 H 5 -CH 3 +6 KMnO 4 +9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 +3K 2 SO 4 + H 2 O
На заключительном этапе необходим коэффициент перед формулой воды, который можно вывести подбором по числу атомов водорода или кислорода:
5C 6 H 5 -CH 3 +6 KMnO 4 + H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + K 2 SO 4 + 14H 2 O
Пример 2. Реакция «серебряного зеркала».
Большинство литературных источников указывают, что альдегиды в этих реакциях окисляются до соответствующих карбоновых кислот. При этом окислителем служит аммиачный раствор оксида серебра (I) – Ag 2 O амм.р-р. В действительности реакция протекает в щелочной аммиачной среде, поэтому должна образовываться соль аммония или СО 2 в случае окисления формальдегида.
Рассмотрим окисление уксусного альдегида реактивом Толленса:
CH 3 CHO + Ag(NH 3 ) 2 OH = …
При этом продуктом окисления будет ацетат аммония, а продуктом восстановления – серебро:
CH 3 CHO + Ag(NH 3 ) 2 OH = CH 3 COONH 4 + Ag + …
Окислению подвергается атом углерода карбонильной группы. Согласно строению карбонила, атом углерода отдает два электрона атому кислорода и принимает один электрон от атома водорода, т.е. степень окисления углерода +1. В карбоксильной группе ацетата аммония атом углерода отдает три электрона атомам кислорода и имеет степень окисления +3. Уравнение электронного баланса:
Ag +1 + 1e = Ag 0 2
Поставим коэффициенты перед формулами веществ, содержащих атомы углерода и серебра:
CH 3 CHO + 2Ag(NH 3 ) 2 OH = CH 3 COONH 4 + 2Ag + …
Из четырех молекул аммиака в левой части уравнения, одна будет участвовать в солеобразовании, а три оставшиеся выделяются в свободном виде. Также в составе продуктов реакции будет вода, коэффициент перед формулой которой можно найти подбором (1):
CH 3 CHO + 2Ag(NH 3 ) 2 OH = CH 3 COONH 4 + 2Ag + H 2 O
В заключение отметим, что альтернативный способ описания ОВР – метод электронно-ионных уравнений — при его преимуществах, требует дополнительное учебное время для изучения и отработки, которое, как правило, крайне ограничено. Однако и известный метод электронного баланса при его грамотном использовании приводит к требуемым результатам.
Видео:Как расставлять коэффициенты методом электронного баланса при окислении органических веществ?Скачать
По теме: методические разработки, презентации и конспекты
Разработка урока по теме «Окислительно- восстановительные реакции с участием органических веществ»
Данная разработка успешно применяется при проведении факультативных занятий,а также при подготовке учащихся к сдаче единого государственного экзамена по химии.
Презентация «Упражнение в расстановке коэффициентов методом электронного баланса»
В презентации представлен алгоритм расстановки коэффициентов методом электронного баланса, а также 18 схем реакций для упражнений в расстановке коэффициентов с проверкой.
Конспект урока «Составление уравнений окислительно-восстановительных реакций методом электронного баланса» (Химия, 8 класс)
Цель урока: обеспечение условий для самостоятельного вывода учащимися и применения ими на практике алгоритма по составлению ОВР методом электронного баланса. Прилагается презентация.
Составление уравнений окислительно – восстановительных реакций методом электронного баланса.
Конспект урока по теме «Составление уравнений окислительно- восстановительных реакций методом электронного баланса».
ИСПОЛЬЗОВАНИЕ МЕТОДА ПОЛУРЕАКЦИЙ В РЕАКЦИЯХ С УЧАСТИЕМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ.
В методическом материале подробно описан метод полуреакций, необходимый для расстановки коэффициентов в органических веществах.
9 класс Тема: «Составление уравнений окислительно-восстановительных реакций методом электронного баланса»
Тема: «Составление уравнений окислительно-восстановительных реакций методом электронного баланса».
Окислительно-восстановительные реакции с участием органических веществ. Алкены. Алкины. Арены. Кислородсодержащие вещества (для педагогов и учащихся)
В связи с введением для выпускников средней школы единого государственного экзамена (ЕГЭ) все большую актуальность приобретает подготовка старшеклассников к выполнению наиболее “дорогих” в балльном от.
📺 Видео
ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать
Как расставлять коэффициенты в химических реакциях | ОВР | Метод электронного баланса, Химия ЕГЭ, ЦТСкачать
89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать
Окислительно-восстановительные реакции в органической химии. Метод электронного баланса.Скачать
Как уравнивать ОРГАНИКУ? Метод электронного баланса для органических реакций. ЕГЭ по химии.Скачать
Органика. Решение уравнений окислительно-восстановительных реакций методом электронного балансаСкачать
Метод электронного баланса. Окислительно-восстановительные реакции. 1 часть. 11 класс.Скачать
8 класс. ОВР. Окислительно-восстановительные реакции.Скачать
Метод электронного баланса в органической химииСкачать
Расстановка коэффициентов методом электронного баланса с участием органических веществ и комплексовСкачать
Метод электронно-ионного балансаСкачать
Решение ОВР методом полуреакцийСкачать