Метанол с угарным газом уравнение реакции

Метанол: химические свойства и получение

Метанол CH3OH, метиловый спирт – это органическое вещество, предельный одноатомный спирт .

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

Метанол с угарным газом уравнение реакции

Содержание
  1. Строение метанола
  2. Водородные связи и физические свойства метанола
  3. Изомерия метанола
  4. Химические свойства метанола
  5. 1.1. Взаимодействие с раствором щелочей
  6. 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
  7. 2. Реакции замещения группы ОН
  8. 2.1. Взаимодействие с галогеноводородами
  9. 2.2. Взаимодействие с аммиаком
  10. 2.3. Этерификация (образование сложных эфиров)
  11. 2.4. Взаимодействие с кислотами-гидроксидами
  12. 3. Реакции замещения группы ОН
  13. 3.2. Межмолекулярная дегидратация
  14. 4. Окисление метанола
  15. 4.1. Окисление оксидом меди (II)
  16. 4.2. Окисление кислородом в присутствии катализатора
  17. 4.3. Жесткое окисление
  18. 4.4. Горение метанола
  19. 5. Дегидрирование спиртов
  20. Получение метанола
  21. 1. Щелочной гидролиз галогеналканов
  22. 2. Гидратация алкенов
  23. 3. Гидрирование карбонильных соединений
  24. 4. Промышленное получение метанола из «синтез-газа»
  25. Реакция взаимодействия метанола и оксида углерода(II)
  26. CH3OH + CO CH3COOH
  27. Производство уксусной кислоты из метанола и оксида углерода
  28. 📺 Видео

Видео:Химия 10 класс (Урок№6 - Одноатомные предельные спирты.)Скачать

Химия 10 класс (Урок№6 - Одноатомные предельные спирты.)

Строение метанола

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Метанол с угарным газом уравнение реакции

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

Метанол с угарным газом уравнение реакции

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Метанол с угарным газом уравнение реакции

Метанол с угарным газом уравнение реакции

Водородные связи и физические свойства метанола

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Метанол с угарным газом уравнение реакции

Метанол с угарным газом уравнение реакции

Поэтому метанол – жидкость с относительно высокой температурой кипения (температура кипения метанола +64,5 о С).

Водородные связи образуются не только между молекулами метанола, но и между молекулами метанола и воды. Поэтому метанол очень хорошо растворимы в воде. Молекулы метанола в воде гидратируются:

Метанол с угарным газом уравнение реакции

Метанол с угарным газом уравнение реакции

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Метанол смешивается с водой в любых соотношениях.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Изомерия метанола

Для метанола не характерно наличие структурных изомеров – ни изомеров углеродного скелета, ни изомеров положения гидроксильной группы, ни межклассовых изомеров.

Видео:Химия 9 класс (Урок№18 - Угарный газ. Углекислый газ.)Скачать

Химия 9 класс (Урок№18 - Угарный газ. Углекислый газ.)

Химические свойства метанола

Метанол – органическое вещество, молекула которого содержит, помимо углеводородной цепи, одну группу ОН.

1. Кислотные свойства метанола

Метанол – неэлектролит, в водном растворе не диссоциирует на ионы; кислотные свойства у него выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

Метанол с растворами щелочей практически не реагирует, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Метанол с угарным газом уравнение реакции

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому метанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Метанол взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, метанол взаимодействует с калием с образованием метилата калия и водорода .

Метилаты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, метилат калия разлагается водой:

CH3OK + H2O → CH3-OH + KOH

Видео:7.4. Спирты: Химические свойства. ЕГЭ по химииСкачать

7.4. Спирты: Химические свойства. ЕГЭ по химии

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии метанола с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, метанол реагирует с бромоводородом.

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии метанола с аммиаком образуется метиламин.

2.3. Этерификация (образование сложных эфиров)

Метанол вступает в реакции с карбоновыми кислотами, образуя сложные эфиры.

Метанол с угарным газом уравнение реакции

Например, метанол реагирует с уксусной кислотой с образованием метилацетата (метилового эфира уксусной кислоты):

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, метанол взаимодействует с азотной кислотой :

Видео:Объемные отношения газов при химических реакциях. 8 класс.Скачать

Объемные отношения газов при химических реакциях. 8 класс.

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от метанола отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации метанола при температуре до 140 о С образуется диметиловый эфир:

Видео:Типы Химических Реакций — Химия // Урок Химии 8 КлассСкачать

Типы Химических Реакций — Химия // Урок Химии 8 Класс

4. Окисление метанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол

4.1. Окисление оксидом меди (II)

Метанол можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Метанол окисляется до метаналя.

Например, метанол окисляется оксидом меди до муравьиного альдегида

4.2. Окисление кислородом в присутствии катализатора

Метанол можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Метанол окисляется до метаналя.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) метанол окисляется до углекислого газа.

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Метанол с угарным газом уравнение реакции

4.4. Горение метанола

При сгорании спиртов образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метанола:

Видео:7.3. Спирты: Способы получения. ЕГЭ по химииСкачать

7.3. Спирты: Способы получения. ЕГЭ по химии

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола образуется альдегид.

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Получение метанола

Видео:Можно ли отличить опасный для здоровья метанол от этилового спиртаСкачать

Можно ли отличить опасный для здоровья метанол от этилового спирта

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол

Метанол с угарным газом уравнение реакции

Видео:Тема: Выход продукта реакцииСкачать

Тема: Выход продукта реакции

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Однако получить метанол гидратацией алкенов нельзя.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании формальдегида образуется метанол


CH2=O + H2 → CH3-OH

Видео:Химическая технология. Получение аммиака и метанола. Видеоурок 22. Химия 11 классСкачать

Химическая технология. Получение аммиака и метанола. Видеоурок 22. Химия 11 класс

4. Промышленное получение метанола из «синтез-газа»

Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.

Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:

Видео:Способы получения предельных одноатомных спиртовСкачать

Способы получения предельных одноатомных спиртов

Реакция взаимодействия метанола и оксида углерода(II)

Видео:Спирты: химические свойства | Химия ЕГЭ для 10 класса | УмскулСкачать

Спирты: химические свойства | Химия ЕГЭ для 10 класса | Умскул

CH3OH + CO Метанол с угарным газом уравнение реакцииCH3COOH

Реакция взаимодействия метанола и оксида углерода(II) с образованием уксусной кислоты. Реакция протекает при температуре около 185°C, в присутствии комплексных соединений родия.

Синтетический метод получения уксусной кислоты.

Видео:Составление уравнений реакций для генетических цепочек по кислородсодержащим. часть 2Скачать

Составление уравнений реакций для генетических цепочек по кислородсодержащим. часть 2

Производство уксусной кислоты из метанола и оксида углерода

1.3.5 Производство уксусной кислоты из метанола и оксида углерода

Производство уксусной кислоты жидкофазным карбонилированием метанола осуществляется при 250°С и 63,7 МПа в присутствии в качестве катализатора карбонила и иодида кобальта:

Побочными продуктами являются пропионовая кислота и более высококипящие продукты, а также оксид и диоксид углерода. На 1 т уксусной кислоты расходуется 0,6 т метанола и 620 м 3 оксида углерода. Одновременно получается 20 кг пропионовой кислоты и 20 кг высококипящих продуктов.

Синтез уксусной кислоты из метанола впервые был разработан и осуществлен в промышленном масштабе фирмой ВАSF.

Метанол с угарным газом уравнение реакции

1 — колонна синтеза;2 — сепаратор высокого давления;3 — сепаратор низкого давления;4, 5 и 6—ректификационные колонны;

I — метанол + катализатор; II — окись углерода;II — продукты синтеза;IV — отработанный газ; V — раствор катализатора;VI — метанол;VII — кислота-сырец;VIII — товарная уксусная кислота;IX — кубовый остаток на сжигание.

Рисунок 1.5 Технологическая схема синтеза уксусной кислоты карбонилированием метанола

На рисунке 5 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой ВАSF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода.

Синтез осуществляется при 250 °С и 70—75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 снова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подастся в колонну б, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание.

Выход уксусной кислоты составляет 90% в расчете на метанол

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1 Химизм процесса

Синтез уксусной кислоты из метанола впервые был разработан и осуществлен в промышленном масштабе фирмой ВАSF. Предполагается, что при синтезе кислот из спиртов первоначально происходит расщепление связи углерод — кислород с образованием галогеналкила:

Галогеналкил далее взаимодействует с гпдрокарбоннлом металла с образованием алкилкарбонилов, ацилкарбоннлов и кислот

RCН2Х+НМе (СО)4 Метанол с угарным газом уравнение реакцииRCН2 Ме (СО)4 +НХ

Гидрокарбонил металла получается по уравнению:

По-видимому, промотирующес влияние галогеноводородных кислот объясняется образованием в их присутствии галогензамещенных гидрокарбоннлов металла

НХ + Ме(СО)4Метанол с угарным газом уравнение реакцииНМе(СО)2Х +2СО

которые обладают большей кислотностью п каталитической активностью по сравнению с незамещенными гидрокарбониламн.

Реакцию карбонилирования спиртов могут катализировать как кислые (фосфорная и серная кислоты, смесь трехфтористого бора с водой), так и щелочные (алкоголяты щелочных металлов) агенты.

Однако наиболее эффективными катализаторами являются соединения никеля, кобальта, железа, родия, рутения и палладия. Эти элементы вводятся в реакционную зону в виде карбонилов, галогенидов или комплексных солей.

В качестве промоторов используются иод, йодистый метил, иодистоводородная кислота.

Особенно эффективны катализаторы на основе родия, промотированного иодом. В их присутствии синтез уксусной кислоты из метанола успешно протекает при сравнительно низких давлениях (3 МПа и ниже), причем достигается практически количественный выход уксусной кислоты (

99%). Катализатор может быть использован многократно.

2.2 Описание технологической схемы

Процесс получения уксусной кислоты включает следующие основные стадии: синтез уксусной кислоты; улавливание легких фракций; очистку уксусной кислоты; приготовление и регенерацию катализатора. Схема потоков стадий синтеза и отгонки легких фракций приведена на рисунке 2.2.

Метанол с угарным газом уравнение реакции

1 — оксид углерода; 2 — метанол; 3 — дистиллят;4 — кубовые остатки;5, 7, 9 — отдувочные газы;6, 8, 10 — жидкая фаза;

РТ1 — реактор; АТ1, АТ2 — подогреватели; АТ3 — холодильник конденсатор; С1, С2, СЗ — сепараторы; КЛ1 — колонна отгонки легких фракций

Рисунок 2.1 Схема потоков стадия синтеза уксусной кислоты

В реактор синтеза барботажного типа РТ1, снабженный перемешивающим устройством, насосом из сборника подают метанол, который предварительно нагревают водяным паром от 40 до 140—180°С в подогревателе АТ1. Оксид углерода поступает в реактор через барботажиое кольцо, в результате чего образуется дисперсная фаза, способствующая быстрому растворению газа в реакционной смеси. Время пребывания веществ в реакционной зоне (0,25—0,30 ч) регулируют уровнем жидкости в реакторе (75—80% от его вместимости), а полноту процесса синтеза при давлении 2,8 МПа и температуре 185°С — тщательным перемешиванием всех потоков, поступающих в реактор, с помощью мешалки.

Реакционная жидкость (уксусная кислота и раствор катализатора с промотором) из реактора РТ1 поступает в сепаратор С2, где за счет снижения давления до 62 кПа происходит частичное испарение жидкости и снижение температуры до 116°С. Здесь же происходит отделение пара от жидкости. Жидкость, содержащую катализатор, из нижней части сепаратора С2 возвращают в реактор РТ1, а пары, выходящие из верхней части сепаратора, поступают в колонку отгонки легких фракций КЛ1. Эти пары содержат уксусную кислоту, метилиодид, иодоводород, воду и незначительные количества метанола, метилацетата, несконденсировавшихся газов.

Из верхней части колонны КЛ1 отбирают метилиодид с парами воды и уксусной кислоты, конденсируют в холодильнике-конденсаторе и разделяют в сепараторе СЗ на две фазы: тяжелую и легкую. Тяжелую фазу, содержащую в основном метилиодид, возвращают в реактор РТ1; часть легкой фазы используют в качестве флегмы для орошения колонны КЛ1, а часть возвращают в реактор синтеза.

Из куба колонны КЛ1 выводят тяжелую фазу, состоящую из метилиодида и уксусной кислоты; этот поток самотеком поступает в сепаратор С2 и таким образом иодоводород и родий возвращают в цикл.

Сырую уксусную кислоту отбирают из средней части колонны легких фракций КЛ1 и направляют на стадию очистки.

Из верхней части реактора синтеза РТ1 выводят отдувочные газы, содержащие пары метилиодида, уксусной кислоты и воды. После охлаждения в холодильнике-конденсаторе АТЗ газовую фазу отделяют от жидкой в сепараторе С1, после чего жидкость возвращают в реактор синтеза, а газ направляют на очистку.

📺 Видео

Химия. 9 класс. Кислородсодержащие органические соединения. Спирты /30.04.2021/Скачать

Химия. 9 класс. Кислородсодержащие органические соединения. Спирты /30.04.2021/

Химия 11 класс (Урок№17 - Принципы химического производства. Промышленное получение металлов.)Скачать

Химия 11 класс (Урок№17 - Принципы химического производства. Промышленное получение металлов.)

СЕРНАЯ КИСЛОТА, АММИАК, МЕТАНОЛ. 26 задание ХИМИЯСкачать

СЕРНАЯ КИСЛОТА, АММИАК, МЕТАНОЛ. 26 задание ХИМИЯ

Как выучить Химию с нуля за 10 минут? Принцип Ле-ШательеСкачать

Как выучить Химию с нуля за 10 минут? Принцип Ле-Шателье

Задание 23 из ЕГЭ по химииСкачать

Задание 23 из ЕГЭ по химии
Поделиться или сохранить к себе: