Матрица приведение уравнений к виду гаусса

Метод Гаусса онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Как привести матрицу к ступенчатому виду - bezbotvyСкачать

Как привести матрицу к ступенчатому виду - bezbotvy

Метод Гаусса

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

Матрица приведение уравнений к виду гаусса(1)

Запишем систему (1) в матричном виде:

Ax=b(2)
Матрица приведение уравнений к виду гауссаМатрица приведение уравнений к виду гаусса(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

Матрица приведение уравнений к виду гаусса(4)

Предположим a11≠0. Если это не так, то можно поменять местами эту строку со строкой с ненулевым элементом в столбце 1 (если нет таких строк, то переходим к следующему столбцу). Обнуляем все элементы столбца 1 ниже ведущего элемента a11. Для этого сложим строки 2,3, . m со строкой 1, умноженной на −a21/a11, −a31/a11, . −am1/a11, соответственно. Тогда (4) примет следующий вид:

Матрица приведение уравнений к виду гаусса(5)

На следующем этапе обнуляем все элементы столбца 2, ниже элемента Матрица приведение уравнений к виду гаусса. Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце. Далее обнуляем все элементы столбца 2 ниже ведущего элемента a22. Для этого сложим строки 3, . m со строкой 2, умноженной на −a32/a22, . −am2/a22, соответственно. Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

Матрица приведение уравнений к виду гаусса(6)

Обратим внимание на последние строки. Если Матрица приведение уравнений к виду гаусса. Матрица приведение уравнений к виду гауссаравны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть Матрица приведение уравнений к виду гаусса. Тогда

Матрица приведение уравнений к виду гауссаМатрица приведение уравнений к виду гаусса
Матрица приведение уравнений к виду гауссаМатрица приведение уравнений к виду гаусса(7)
Матрица приведение уравнений к виду гаусса

Так как rangA=rang(A|b), то множество решений (7) есть (n−p)− многообразие. Следовательно n−p неизвестных Матрица приведение уравнений к виду гауссаможно выбрать произвольно. Остальные неизвестные Матрица приведение уравнений к виду гауссаиз системы (7) вычисляются так. Из последнего уравнения выражаем xp через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем xp−1 через остальные переменные и вставляем в предыдущие выражения и т.д. Рассмотрим метод Гаусса на конкретных примерах.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Примеры решения системы линейных уравнений методом Гаусса

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Матрица приведение уравнений к виду гаусса

Матричный вид записи: Ax=b, где

Матрица приведение уравнений к виду гаусса

Для решения системы, запишем расширенную матрицу:

Матрица приведение уравнений к виду гаусса

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Матрица приведение уравнений к виду гаусса

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 9/8:

Матрица приведение уравнений к виду гаусса

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Матрица приведение уравнений к виду гаусса

Из вышеизложенной таблицы можно записать:

Матрица приведение уравнений к виду гаусса

Подставив верхние выражения в нижние, получим решение.

Матрица приведение уравнений к виду гаусса,Матрица приведение уравнений к виду гаусса,Матрица приведение уравнений к виду гаусса.

Пример 2. Найти общее решение системы линейных уравнений методом Гаусса:

Матрица приведение уравнений к виду гаусса

Матричный вид записи: Ax=b, где

Матрица приведение уравнений к виду гаусса

Для решения системы, построим расширенную матрицу:

Матрица приведение уравнений к виду гаусса

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Матрица приведение уравнений к виду гаусса

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на -1:

Матрица приведение уравнений к виду гаусса

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Матрица приведение уравнений к виду гаусса

Выразим переменные x1, x2 относительно остальных переменных.

Матрица приведение уравнений к виду гаусса

где x3, x4− произвольные действительные числа.

Подставив верхние выражения в нижние, получим решение.

Матрица приведение уравнений к виду гаусса

где x3, x4− произвольные действительные числа.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Матрица приведение уравнений к виду гаусса

Тогда векторное решение можно представить так:

Матрица приведение уравнений к виду гаусса

где x3, x4− произвольные действительные числа.

Видео:Приведение матрицы к ступенчатому виду. Алгоритм ГауссаСкачать

Приведение матрицы к ступенчатому виду. Алгоритм Гаусса

Матрицы: метод Гаусса. Вычисление матрицы методом Гаусса: примеры

Линейная алгебра, которая преподается в вузах на разных специальностях, объединяет немало сложных тем. Одни из них связаны с матрицами, а также с решением систем линейных уравнений методами Гаусса и Гаусса – Жордана. Не всем студентам удается понять эти темы, алгоритмы решения разных задач. Давайте вместе разберемся в матрицах и методах Гаусса и Гаусса – Жордана.

Видео:Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Основные понятия

Под матрицей в линейной алгебре понимается прямоугольный массив элементов (таблица). Ниже представлены наборы элементов, заключенные в круглые скобки. Это и есть матрицы. Из приведенного примера видно, что элементами в прямоугольных массивах являются не только числа. Матрица может состоять из математических функций, алгебраических символов.

Матрица приведение уравнений к виду гаусса Вам будет интересно: Закон Максвелла. Распределение Максвелла по скоростям

Для того чтобы разобраться с некоторыми понятиями, составим матрицу A из элементов aij. Индексы являются не просто буквами: i – это номер строки в таблице, а j – это номер столбца, в области пересечения которых располагается элемент aij. Итак, мы видим, что у нас получилась матрица из таких элементов, как a11, a21, a12, a22 и т. д. Буквой n мы обозначили число столбцов, а буквой m – число строк. Символ m × n обозначает размерность матрицы. Это то понятие, которое определяет число строк и столбцов в прямоугольном массиве элементов.

Необязательно в матрице должно быть несколько столбцов и строк. При размерности 1 × n массив элементов является однострочным, а при размерности m × 1 – одностолбцовым. При равенстве числа строчек и числа столбцов матрицу именуют квадратной. У каждой квадратной матрицы есть определитель (det A). Под этим термином понимается число, которое ставится в соответствие матрице A.

Еще несколько важных понятий, которые нужно запомнить для успешного решения матриц, – это главная и побочная диагонали. Под главной диагональю матрицы понимается та диагональ, которая идет вниз в правый угол таблицы из левого угла сверху. Побочная диагональ идет в правый угол вверх из левого угла снизу.

Матрица приведение уравнений к виду гаусса

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Ступенчатый вид матрицы

Взгляните на картинку, которая представлена ниже. На ней вы увидите матрицу и схему. Разберемся сначала с матрицей. В линейной алгебре матрица подобного вида называется ступенчатой. Ей присуще одно свойство: если aij является в i-й строке первым ненулевым элементом, то все другие элементы из матрицы, стоящие ниже и левее aij, являются нулевыми (т. е. все те элементы, которым можно дать буквенное обозначение akl, где k>i, а l Понравилась статья? Поделись с друзьями:

Видео:Приведение определителя к треугольному видуСкачать

Приведение определителя к треугольному виду

Метод Гаусса приведения матрицы к ступенчатому виду

Элементарными преобразованиями матрицы называются следующие ее преобразования:

I. Перестановка двух столбцов (строк) матрицы.

II. Умножение всех элементов одного столбца (строки) матрицы на одно и то же число, отличное от нуля.

III. Прибавление к элементам одного столбца (строки) соответствующих элементов другого столбца (строки), умноженных на одно и то же число.

Матрица , полученная из исходной матрицы конечным числом элементарных преобразований, называется эквивалентной . Это обозначается .

Элементарные преобразования применяются для упрощения матриц, что будет в дальнейшем использоваться для решения разных задач.

Покажем, как при помощи элементарных преобразований можно привести матрицу к ступенчатому виду (рис. 1.4). Здесь высота каждой «ступеньки» составляет одну строку, символом 1 (единицей) обозначены единичные элементы матрицы, символом * — обозначены элементы с произвольными значениями, остальные элементы матрицы нулевые. К ступенчатому виду можно привести любую матрицу, причем достаточно использовать только элементарные преобразования строк матрицы .

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Алгоритм приведения матрицы к ступенчатому виду

Чтобы привести матрицу к ступенчатому виду (рис. 1.4), нужно выполнить следующие действия.

1. В первом столбце выбрать элемент, отличный от нуля ( ведущий элемент ). Строку с ведущим элементом ( ведущая строка ), если она не первая, переставить на место первой строки (преобразование I типа). Если в первом столбце нет ведущего (все элементы равны нулю), то исключаем этот столбец, и продолжаем поиск ведущего элемента в оставшейся части матрицы. Преобразования заканчиваются, если исключены все столбцы или в оставшейся части матрицы все элементы нулевые.

2. Разделить все элементы ведущей строки на ведущий элемент (преобразование II типа). Если ведущая строка последняя, то на этом преобразования следует закончить.

3. К каждой строке, расположенной ниже ведущей, прибавить ведущую строку, умноженную соответственно на такое число, чтобы элементы, стоящие под ведущим оказались равными нулю (преобразование III типа).

4. Исключив из рассмотрения строку и столбец, на пересечении которых стоит ведущий элемент, перейти к пункту 1, в котором все описанные действия применяются к оставшейся части матрицы.

Пример 1.29. Привести к ступенчатому виду матрицы

Решение. В первом столбце матрицы выбираем ведущий элемент . Делим все элементы первой строки на (или, что то же 1 1. самое, умножаем на ):

Прибавим ко второй строке первую, умноженную на (-2):

Первый столбец и первую строку исключаем из рассмотрения. В оставшейся части матрицы имеется один элемент (-2), который выбираем в качестве ведущего. Разделив последнюю строку на ведущий элемент, получаем матрицу ступенчатого вида

Преобразования закончены, так как ведущая строка последняя. Заметим, что получившаяся матрица является верхней треугольной.

В первом столбце матрицы выбираем ведущий элемент . Меняем местами строки, ставя ведущую строку на место первой, и делим элементы ведущей строки на ведущий элемент 2:

Пункт 3 алгоритма делать не надо, так как под ведущим элементом стоит нуль. Исключаем из рассмотрения первую строку и первый столбец. В оставшейся части ведущий элемент — число 2. Разделив ведущую строку (вторую) на 2, получаем ступенчатый вид:

Преобразования закончены, так как ведущая строка последняя.

В первом столбце матрицы выбираем ведущий элемент . Первая строка — ведущая. Делим ее элементы на . Получаем

Ко второй и третьей строкам прибавим первую, умноженную на (-3) и на (-6) соответственно:

Обратим внимание на то, что полученная матрица еще не является матрицей ступенчатого вида, так как вторую ступеньку образуют две строки (2-я и 3-я) матрицы. Исключив 1-ю строку и 1-й столбец, ищем в оставшейся части ведущий элемент. Это элемент (-1). Делим вторую строку на (-1), а затем к третьей строке прибавляем ведущую (вторую), умноженную на 5:

Исключим из рассмотрения вторую строку и второй столбец. Поскольку исключены все столбцы, дальнейшие преобразования невозможны. Полученный вид — ступенчатый.

1. Говорят, что матрица имеет ступенчатый вид также и в случае, когда на месте ведущих элементов (обозначенных на рис. 1.4 единицей) стоят любые отличные от нуля числа.

2. Считается, что нулевая матрица имеет ступенчатый вид.

Пример 1.30. Привести к ступенчатому виду матрицу

Решение. Первый столбец матрицы — нулевой. Исключаем его из рассмотрения и исследуем оставшуюся часть (последние 5 столбцов):

Берем в качестве ведущего элемент . Прибавляем ко второй строке первую, умноженную на (-1); к третьей строке — первую, умноженную на (-2); к четвертой строке — первую, умноженную на (-4). Тем самым «обнуляются» все элементы второго столбца, расположенные ниже ведущего элемента:

Полученная матрица не имеет ступенчатого вида, так как одна из ступенек имеет высоту в три строки. Продолжаем преобразования. Первую строку и второй столбец исключаем из рассмотрения. Поскольку первый столбец в оставшейся части матрицы нулевой, исключаем его. Теперь оставшаяся часть матрицы — это матрица (размеров ), образованная элементами, расположенными в последних трех строках и трех столбцах полученной матрицы. В качестве ведущего элемента выбираем . К третьей строке прибавляем вторую. Получаем матрицу

Вторую строку и четвертый столбец исключаем из рассмотрения. Берем элемент в качестве ведущего. Делим третью строку на число 2 (умножаем на 0,5):

К четвертой строке прибавляем третью, умноженную на (-2):

Третью строку и четвертый столбец исключаем из рассмотрения. Поскольку в оставшейся части матрицы все элементы (один) нулевые, преобразования закончены. Матрица приведена к ступенчатому виду (см. рис. 1.4).

Замечание 1.9. Продолжая выполнять элементарные преобразования над строками матрицы, можно упростить ступенчатый вид, а именно привести матрицу к упрощенному виду (рис. 1.5).

Здесь символом 1 обозначены элементы матрицы, равные единице, символом * — обозначены элементы с произвольными значениями, остальные элементы матрицы нулевые. Заметим, что в каждом столбце с единицей остальные элементы равны нулю.

Пример 1.31. Привести к упрощенному виду матрицу

Решение. Матрица имеет ступенчатый вид. Прибавим к первой строке третью, умноженную на (-1), а ко второй строке третью, умноженную на (-2):

Теперь к первой строке прибавим вторую, умноженную на (-1). Получим матрицу упрощенного вида (см. рис. 1.5):

Замечание 1.10. При помощи элементарных преобразований (строк и столбцов) любую матрицу можно привести к простейшему виду (рис. 1.6).

Левый верхний угол матрицы представляет собой единичную матрицу порядка , а остальные элементы равны нулю. Считается, что нулевая матрица уже имеет простейший вид (при ).

Пример 1.32. Привести матрицу к простейшему виду.

Решение. В качестве ведущего элемента возьмем . Ко второй строке прибавим первую, умноженную на (-2):

Ко второму столбцу прибавим первый, умноженный на (-2), а к третьему -первый, умноженный на (-3):

Умножим все элементы последнего столбца на (-1) и переставим его на место второго:

Таким образом, исходная матрица при помощи элементарных преобразований приведена к простейшему виду (см. рис. 1.6).

Видео:Приведение матрицы к ступенчатому видуСкачать

Приведение матрицы к ступенчатому виду

Свойства элементарных преобразований матриц

Подчеркнем следующие свойства элементарных преобразований матриц .

Теорема 1.1 о приведении матрицы к ступенчатому виду . Любую матрицу при помощи элементарных преобразований ее строк можно привести к ступенчатому (или даже упрощенному) виду.

Следствие (о приведении матрицы к простейшему виду). Любую матрицу при помощи элементарных преобразований ее строк и столбцов можно привести к простейшему виду.

1. Преобразования, обратные к элементарным, являются элементарными . В самом деле, если в матрице поменяли местами два столбца (преобразование I типа), то исходную матрицу можно получить, еще раз поменяв местами эти столбцы. Если столбец матрицы умножили на число (преобразование II типа), то для получения исходной матрицы надо этот столбец умножить на обратное число . Если к i-му столбцу матрицы прибавили j-й столбец, умноженный на число , то для получения исходной матрицы достаточно к i-му столбцу матрицы прибавить j-й столбец, умноженный на противоположное число ( ).

2. В теореме 1.1 говорится о приведении матрицы к ступенчатому (упрощенному) виду при помощи элементарных преобразований только ее строк, не используя преобразования ее столбцов. Чтобы привести произвольную матрицу к простейшему виду (следствие теоремы 1.1), нужно использовать преобразования и строк, и столбцов матрицы.

3. Рассмотрим следующую модификацию пункта 3 метода Гаусса. Ведущий элемент, выбранный в п. 1 метода Гаусса, определяет ведущую строку и ведущий столбец матрицы (он находится на их пересечении). Делим все элементы ведущей строки на ведущий элемент (см. п.2 метода Гаусса). Прибавляя ведущую строку, умноженную на соответствующие числа, к остальным строкам матрицы (аналогично п.3 метода Гаусса), делаем равными нулю все элементы ведущего столбца, за исключением ведущего элемента. Затем, прибавляя полученный ведущий столбец, умноженный на соответствующие числа, к остальным столбцам матрицы, делаем равными нулю все элементы ведущей строки, за исключением ведущего элемента. При этом получаем ведущие строку и столбец, все элементы которых равны нулю, за исключением ведущего элемента, равного единице.

Модифицированный таким образом метод Гаусса называется методом Гаусса-Жордана . Его применение позволяет сразу получить простейший вид матрицы, минуя ее ступенчатый вид.

🔍 Видео

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

5. Вычисление определителя методом приведения матрицы определителя к треугольному видуСкачать

5. Вычисление определителя методом приведения матрицы определителя к треугольному виду

§16 Приведение определителей к треугольному видуСкачать

§16 Приведение определителей к треугольному виду

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnlineСкачать

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnline

Определитель 5 порядка приводим к треугольному видуСкачать

Определитель 5 порядка приводим к треугольному виду

Как найти ранг матрицы (пример) - bezbotvyСкачать

Как найти ранг матрицы (пример) - bezbotvy

Ранг матрицыСкачать

Ранг матрицы

Алгоритм приведения матрицы к треугольному видуСкачать

Алгоритм приведения матрицы к треугольному виду

Решение матричных уравненийСкачать

Решение матричных уравнений

11. Ранг матрицыСкачать

11. Ранг матрицы

Ранг матрицыСкачать

Ранг матрицы
Поделиться или сохранить к себе: