Название: Математические модели процессов Раздел: Рефераты по математике Тип: реферат Добавлен 06:29:50 06 июля 2011 Похожие работы Просмотров: 1463 Комментариев: 12 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно Скачать | ||||||||||||||
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 |
В каждом из перечисленных случаев в различной степени сказывается влияние таких ранее не учтенных факторов, как сила сопротивления воздуха, притяжение Луны, Солнца, убывание плотности атмосферы с высотой, вращение Земли, ветер, по-разному дующий на разных высотах, фактическое отличие формы Земли от шара (она является телом более сложной геометрической формы).
Проблема 3. Определение уровня детализации исследуемого объекта.
Любая физическая система представляет собой совокупность элементов. Каждый элемент в свою очередь можно расчленить на подэлементы. Процесс расчленения теоретически может быть бесконечным. Задача исследователя – выбрать оптимальный уровень детализации моделируемого объекта. Уровень детализации определяется целью моделирования и степенью знаний о свойствах элементов объекта.
Детализацию целесообразно производить до такого уровня, на котором для каждого элемента можно определить зависимость параметров выходных сигналов от параметров входных сигналов. Стремление повысить уровень детализации приводит к чрезмерной громоздкости модели и резкому увеличению ее размерности.
3-й этап. Формирование математической модели, т. е. запись модели в формализованном виде:
– все соотношения записывают в аналитической форме;
– логические условия выражают в виде систем неравенств;
– случайные процессы заменяют их типовыми моделями.
4-й этап. Исследование математической модели. Инструментами исследования являются численные и аналитические методы.
5-й этап. Анализ результатов моделирования с последующим выводом об адекватности модели либо о необходимости ее доработки, либо о ее непригодности.
1.3.4. Классификация математических моделей
Математические модели можно классифицировать по форме их представления (рис. 1.10). За основу второй классификации (рис. 1.11) взят характер модели.
2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ФОРМЕ
СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
2.1. Области применения
Исследование некоторых физических систем приводит к математическим моделям в форме систем линейных алгебраических уравнений (СЛАУ). Иногда СЛАУ появляются в процессе математического моделирования как промежуточный шаг (этап) в решении более сложной задачи. Есть значительное число научно-технических задач, в которых математические модели сложных нелинейных систем посредством дискретизации или линеаризации сводятся к решению СЛАУ.
Примеры задач, использующих математические модели в форме СЛАУ:
1) при проектировании и эксплуатации электротехнических устройств требуется проведение расчета и анализа их работы в стационарных режимах. Задача сводится к расчету эквивалентных схем, в основе которого лежит формирование и решение СЛАУ;
2) при построении математической модели, связывающей функциональной зависимостью некоторые параметры x, y исследуемого объекта на основании полученных в результате эксперимента данных , где i = 1,2,3, . ,n (задачи аппроксимации данных);
3) при исследовании процессов в системах, математические модели которых строятся в классе дифференциальных уравнений в частных производных. В результате разностной аппроксимации исходной модели при определенных условиях приходят к математическим соотношениям в форме СЛАУ;
4) сущность многих физических процессов математически отображается с помощью интегральных уравнений. Ввиду сложности решения многих из них исследователь предпочитает свести задачу к решению модели в форме СЛАУ, используя известные методы аппроксимации.
5) исследование систем автоматического регулирования в установившемся режиме приводит во многих случаях к статическим моделям в форме СЛАУ.
Система линейных уравнений порядка n имеет вид:
(2.1)
или в векторно-матричной форме:
(2.2)
где – вектор свободных членов;
– вектор неизвестных;
A – матрица коэффициентов системы, размером .
2.2. Методы решения
Методы решения СЛАУ делятся на две группы: прямые (точные) и итерационные (приближенные).
Прямые методы позволяют получить решение за конечное число шагов. Итерационные методы построены по принципу многократного вычисления последовательных приближений, сходящихся к искомому решению.
Прямые методы целесообразно использовать для решения систем сравнительно небольшой размерности с плотно заполненной матрицей (матрицей, имеющей малое количество нулевых элементов). Итерационные методы предпочтительнее в задачах большой размерности со слабо заполненными матрицами.
К прямым методам относятся метод определителей, метод Гаусса и его модификации, метод LU-разложения, матричный метод и др. К разряду итерационных методов принадлежат метод простой итерации, метод Зейделя.
Видео:Лекция 09.01. Математические модели технологических процессовСкачать
2.2.1. Прямые методы
2.2.1.1. Метод Гаусса
Решение СЛАУ осуществляется в два этапа (прямой и обратный ход)
Прямой ход. Исходная система (2.1) путем последовательных преобразований приводится к треугольному виду. Это достигается последовательным исключением неизвестных из уравнений. В результате получается эквивалентная система:
(2.3)
Обратный ход. С помощью подстановки в предпоследнее (n-1)-е уравнение системы (2.3) вычисляется . Подстановкой и в (n-2)-е уравнение определяют . Таким же образом последовательно определяют неизвестные .
П р и м е р 14. Решить систему с тремя неизвестными методом Гаусса:
(2.4)
Прямой ход. Первое уравнение из системы (2.4) разделим на 3:
(2.5)
Из второго уравнения исключим неизвестное Для этого ко второму уравнению прибавим преобразованное первое уравнение, умноженное на (–2). Получим:
(2.6)
(2.7)
Разделим уравнение (2.7) на . Получим:
. (2.8)
Из третьего уравнения системы (2.4) исключим . Для этого из третьего уравнения вычтем первое преобразованное (2.5):
(2.9)
(2.10)
Разделим уравнение (2.10) на :
, (2.11)
(2.12)
Из третьего уравнения системы (2.12) исключим неизвестное . Для этого к третьему уравнению прибавим второе:
(2.13)
или , (2.14)
откуда выразим : .
Тогда эквивалентная система в треугольном виде примет вид:
(2.15)
Обратный ход. Подставим значение во второе уравнение системы (2.15) и найдем . Подстановкой значений и в первое уравнение найдем .
Если квадратная матрица линейной системы
(2.16)
имеет отличные от нуля главные диагональные миноры, т. е.
(2.17)
то она может быть разложена на произведение двух треугольных матриц – нижней с ненулевыми диагональными элементами и верхней – с единичными диагональными элементами
(2.18)
Поэтому матричное уравнение (2.16) можно заменить уравнением:
(2.19)
Введем вектор вспомогательных переменных Тогда уравнение (2.19) можно записать в виде системы двух векторно-матричных уравнений:
(2.20)
Таким образом, решение системы (2.16) сводится к последовательному решению двух систем с треугольными матрицами типа (2.3) или (2.15), из которых неизвестные определяются последовательной подстановкой.
Математически это выражается так: из первого уравнения системы (2.20) определяется вектор :
, (2.21)
после чего из второго уравнения системы (2.19) вычисляется вектор :
. (2.22)
Обратные матрицы и существуют, т. к. определители треугольных матриц L и U, вычисляемые как произведения их диагональных элементов, отличны от нуля.
Метод LU-разложения – это фактически метод Гаусса, выраженный в векторно-матричной форме, отличающийся от классического варианта способом хранения матриц.
2.2.1.3. Матричный метод
Если для системы выполняется условие невырожденности матрицы A
, (2.23)
то решение этой системы можно представить в виде:
, (2.24)
где – обратная матрица.
2.2.2. Итерационные методы
2.2.2.1. Метод простых итераций
Исходная система уравнений (2.1) приводится к виду:
(2.25)
(2.26)
Задав начальные (нулевые) приближения для искомых неизвестных:
(2.27)
подставляем их в правую часть системы (2.26). Получаемые при этом в левой части системы значения представляют собой первые приближения:
, (2.28)
где
Подставив первые приближения в правую часть системы (2.26), в левой ее части получим вторые приближения − :
. (2.29)
Таким образом, итерационный процесс описывается соотношениями:
(2.30)
Полученные в результате последовательности итераций приближения: сходятся к истинному решению системы (2.1), в том случае, если для коэффициентов системы (2.26) выполняется хотя бы одно из условий:
; (2.31)
. (2.32)
Вычисления продолжают до тех пор, пока не будет выполнено условие:
(2.33)
где – заданная точность.
2.2.2.2. Метод Зейделя
Метод Зейделя – модификация метода простых итераций, обеспечивающая ускорение сходимости итерационного процесса к истинному решению системы за счет следующего приема.
Уточненное значение , полученное из первого уравнения системы (2.26) вводится во второе уравнение системы и используется для вычисления . Затем уточненные значения , вводятся в третье уравнение системы (2.26) и используются для вычисления . Таким образом, k-е приближение будет определяться через уточненные в процессе k-й итерации значения . Следовательно, итерационный процесс, реализуемый в методе Зейделя, может быть выражен соотношениями:
(2.34)
3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ФОРМЕ НЕЛИНЕЙНЫХ
АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ
3.1. Пример формирования модели
П р и м е р 15. Моделируемый объект – нелинейная цепь постоянного тока (рис. 3.1). R2 – нелинейное сопротивление.
По закону Кирхгофа
(3.1)
Нелинейную вольт-амперную характеристику (ВАХ) элемента R2 аппроксимируем выражением:
(3.2)
Сделаем подстановку выражения (3.2) в уравнение (3.1):
(3.3)
(3.4)
f(i)
Соотношение f(i) = 0 представляет собой математическую модель электрической цепи в форме нелинейного алгебраического уравнения относительно тока i. Решение этой модели позволит определить ток i в цепи при заданных значениях U и R1.
Исследование объектов различной физической природы в установившемся режиме часто приводит к статическим моделям в форме нелинейных алгебраических уравнений.
Алгебраическое уравнение может содержать только алгебраические функции, в которых над переменной x производятся арифметические операции, возведение в степень с рациональным показателем и извлечение корня. Например:
(3.5)
(3.6)
В некоторых задачах моделирование приводит к трансцендентному уравнению.
Трансцендентным называется уравнение, в состав которого входят трансцендентные функции: показательная, логарифмическая, тригонометрические функции, возведение в иррациональную степень. Например:
(3.7)
(3.8)
3.2. Базовые понятия
Уравнение с одним неизвестным x в общем случае имеет вид:
где z(x) и g(x) — функции, определенные на некотором числовом множестве X, называемом областью допустимых значений уравнения.
Другая форма записи уравнения с одним неизвестным имеет вид:
где f(x) = z(x) – g(x) получается в результате переноса функции g(x) в левую часть уравнения (3.9).
Всякое значение x*, которое при подстановке в уравнение (3.10) обращает его в числовое равенство, а функцию f(x) — в ноль, т. е. такое, что
, (3.11)
называется корнем уравнения, или нулем функции f(x).
Решить уравнение – значит найти все его корни (решения) или доказать, что уравнение не имеет корней.
Для алгебраических уравнений число корней известно заранее. Каждое алгебраическое уравнение степени n имеет в множестве комплексных чисел n корней с учетом кратности.
3.3. Методы решения
Аналитическое (явное) решение, т. е. решение в виде готовой формулы, выражающей неизвестное x через параметры уравнения, можно получить только для ограниченного круга уравнений, например формулы для вычисления корней квадратного (аx2+bx+c=0) и кубического (x3+px+q=0) уравнений. Решение некоторых простейших трансцендентных уравнений может быть получено в аналитической форме с использованием степенных рядов, непрерывных дробей и т. д.
В большинстве случаев найти явное решение уравнения очень сложно или невозможно. Кроме того, использование аналитических формул для решения большинства уравнений не может обеспечить получение точного значения корня, поскольку коэффициенты уравнения являются приближенными величинами, определенными в результате измерений. Поэтому задача отыскания точного значения корня теряет смысл.
Ставится задача – определить приближенное значение корня уравнения с заданной точностью.
Приближенное решение математических задач лежит в основе численных методов.
3.3.1. Особенности численных методов решения
3.3.1.1. Этапы численного решения нелинейного уравнения
Численное решение уравнения f(x) = 0 (речь идет о действительных корнях) проводят в два этапа:
1) отделение корней, т. е. отыскание таких достаточно малых отрезков в области допустимых значений x, в которых содержится только один корень;
2) уточнение корней, т. е. вычисление корней с заданной точностью.
3.3.1.2. Отделение корней
Рассмотрим несколько способов отделения корней.
С п о с о б 1 – по графику функции y = f(x).
приближенно определяется как абсцисса точки пересечения графика с осью Оx (рис. 3.2). Устанавливаются границы a и b отрезка, в пределах которого заключен только один корень x*.
С п о с о б 2 – уравнение f(x) = 0 заменяют равносильным:
. (3.13)
Строят графики функций и
Приближенное значение корня определяют как абсциссу точки пересечения этих графиков.
Например: отделим корень уравнения
(3.14)
для области значений аргумента x > 0.
Преобразуем уравнение (3.14) к виду:
(3.15)
где
Строим графики (рис. 3.3) и находим приближенно x* и отрезок .
С п о с о б 3 – по таблице значений функции f(x) на интересующем интервале изменения аргумента x. Например, представим таблицу (табл.3.1) значений функции
. (3.16)
Из данных табл. 3.1 видно, что корень уравнения существует и его следует искать на отрезке [7,0; 10,0], так как значения функции на концах этого отрезка имеют разные знаки.
Таблица значений функции
С п о с о б 4 – аналитический метод отделения корней, который базируется на знании следующих свойств функции:
а) если функция непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, то внутри отрезка существует по крайней мере один корень уравнения ;
б) если функция непрерывна и монотонна на отрезке и принимает на концах отрезка значения разных знаков, а производная сохраняет постоянный знак внутри отрезка, то внутри этого отрезка существует корень уравнения и притом единственный.
Функция называется монотонной в заданном интервале, если при любых из этого интервала она удовлетворяет условию (монотонно возрастающая функция)
или (монотонно убывающая функция).
Необходимым и достаточным условием монотонности функции в заданном интервале является выполнение для всех внутренних точек этого интервала условия или
Зная свойства функции , можно сделать вывод о характере графика , что может существенно облегчить процесс отыскания корней. Продемонстрируем это для непрерывной и монотонной на отрезке функции , которая принимает на концах отрезка значения разных знаков, имеет во всех точках интервала первую и вторую производные и , сохраняющие постоянный знак (рис. 3.4).
3.3.1.3. Уточнение корней
Рассмотрим несколько численных методов уточнения корней, применяемых для решения как алгебраических, так и трансцендентных уравнений. Эти методы относятся к разряду итерационных.
Итерационный процесс состоит в последовательном шаг за шагом уточнении начального приближения x0 искомого корня. Каждый шаг такого метода называется итерацией.
В результате реализации итерационного метода получают последовательность приближенных значений корня Если эти значения с увеличением n приближаются к истинному значению корня x*, то говорят, что итерационный процесс сходится.
3.3.1.3.1. Метод половинного деления (дихотомии, бисекции)
Пусть дано уравнение
(3.17)
где функция непрерывна и монотонна на отрезке и имеет на концах отрезка разные знаки:
(3.18)
Требуется найти корень уравнения (3.17) с точностью до График функции представлен на рис. 3.5.
Рассмотрим суть и этапы реализации метода половинного деления.
1) Отрезок делим пополам и определяем середину отрезка:
(3.19)
2) Вычисляем значение функции в точке Если , то является корнем уравнения. Если то поиск корня продолжается на одном из двух полученных отрезков – или . Следует выбрать тот отрезок, на концах которого функция принимает значения противоположных знаков. В данном случае (см. рис. 3.5) выбираем отрезок , так как для него выполняется условие: Для того чтобы сохранить в дальнейших расчетах единое обозначение текущего отрезка, на котором ведется поиск корня на данном шаге вычислений, необходимо параметру b присвоить новое значение : b = . С точки зрения геометрической интерпретации (см. рис. 3.5) это означает, что правая граница исходного отрезка точка b переносится в точку а оставшаяся за пределами точки часть графика дальше не рассматривается.
Видео:7 класс, 3 урок, Что такое математическая модельСкачать
Математическая модель
Видео:2) ТАУ для чайников. Часть 2.1: Математические модели...Скачать
Что такое математическая модель
Математическая модель — концепция представления реальности математическим способом, вариант схемы как комплекса, изучение которого позволяет человеку обрести знания о некой другой системе.
Простой пример: график зависимости среднесуточной температуры от времени.
Математическая модель также была создана для того, чтобы проанализировать и предугадать поведение материального объекта. Однако у математической модели есть проблема, от которой не избавиться — идеализация.
Математическое моделирование — процесс создания, а также приемы построения и исследования математических моделей.
Все науки, которые используют для решения своих задач математический аппарат, практикуют математическое моделирование. То есть, заменяют объект своего исследования математической моделью и занимаются исследованием последней.
При помощи совокупности математических методов можно описать образцовый объект или процесс, который построен на стадии содержательного моделирования.
Как осуществляется связь математической модели и реальности?
- Эмпирические законы.
- Гипотезы.
- Идеализация.
- Упрощения.
Самые важные математические модели всегда обладают качеством универсальности. То есть, совершенно разные феномены могут быть описаны одной математической моделью.
Однако стоит помнить, что модель — объект, она может иметь собственные качества и свойства, которые могут не относиться к реальному моделируемому объекту.
Часто математические модели представляют в виде:
- Графика. Получить данные для решения задачи мы можем, посмотрев на данные графика.
- Уравнения. Данные для решения задачи зашифрованы в виде уравнения, под буквами x и y.
Представим основные понятия, которые важны для изучения данной темы:
- Реальный объект — исследуемый объект. Им может быть явление, система, либо процесс.
- Модель — нематериальный или материальный объект исследования, который является заменителем настоящего процессаявлениясистемы.
- Моделирование — способ исследования предметов с помощью прототипов.
Видео:Математическое моделированиеСкачать
Виды математических моделей, классификация
Существует несколько классификаций математических моделей. Рассмотрим некоторые из них.
Формальная типология
Основа данной классификации — какие математические средства используются для создания модели. Для создания схем в формальной классификации часто используется прием дихотомии.
Дихотомия — раздвоение, разделение чего-то на две части. Например, графиков.
К известным типам дихотомии относятся:
Линейные | Нелинейные |
Сосредоточенные | Распределенные |
Детерминированные | Стохастические |
Статические | Динамические |
Дискретные | Непрерывные |
Типология по методу представления объекта
В рамках данной классификации выделяют структурные и функциональные модели.
- Структурная модель показывает объект как комплекс с механизмом и устройством функционирования.
- Функциональные модели могут отражать поведение объекта, которое мы можем воспринимать внешне.
Эти парадигмы также имеют название «черные ящики».
Содержательные, а также формальные модели
Многие авторы, которые описывают процесс моделирования в математике, отмечают, что для начала нужно построить специальную образцовую конструкцию, так называемую содержательную модель.
В разных учебных изданиях идеальный объект называется по-разному. Встречаются такие примеры как умозрительная модель, концептуальная модель, а также предмодель.
Конечная математическая схема будет назваться формальной моделью (математическая модель). Она получается в результате представления предмодели с помощью формального языка.
Построить умозрительную модель можно с помощью уже готового набора идеализаций. Например, в механике существуют идеальные пружины, маятники, твердые тела и тд, которые представляют собой готовые заготовки для построения содержательной модели.
Однако есть научные области, в которых сложно построить содержательные модели, потому что в них нет полноценных формализованных доктрин. К таким дисциплинам относятся биология, физика, психология, экономика и многие другие).
Содержательная типология
В работах английского физика Рудольфа Эрнста Пайерлса можно найти некоторые типологии математических моделей, которые используются в физике и других естественных науках. Советские ученые Александр Горбань и Рэм Хлебопрос расширили классификацию Пайерлса. Данная типология акцентирует свое внимание на процессе выстраивания содержательной модели. Итак, существуют следующие типы математических моделей:
- Гипотеза. Это пробное описание феноменов, автор которых либо верит в возможность их существования, либо считает это явление истинным. Такой, по мнению Пайерлса, является макет Солнечной системы от Птолемея, атомная модель Резерфорда, прототип Большого взрыва.
- Феноменологическая модель. Этот тип содержит систему для описания феномена. Эта система обычно не особенно убедительна, не имеет достаточную аргументационную базу, плохо соотносится с существующими теориями. У феноменологических моделей временный статус. Ответ на вопрос феноменологической модели неизвестен, поэтому продолжается поиск истинных решений проблемы. К этому типу относятся макет теплорода.
- Приближение. Если возможно построение уравнения, которое могло бы описать систему, это не значит, что его можно найти решения уравнения с помощью компьютерных программ. К таким уравнения относятся модели линейного отклика. Просто пример приближения — закон Ома.
- Упрощение. В рамках данной модели убираются детали, которые могли бы повлиять на результат исследования (заметно и не контролируемо). Примером данного типа являются уравнения состояния Вандер-Ваальса, а также модели из физики жидкостей, твердого тела и т.д.
- Эвристическая модель. Данная модель сохраняет подобие реальности, метод «слепого поиска» (через ошибки и пробы). Примером данной модели может быть измерение средней длины свободного пробега в кинетической теории.
- Аналогия. Этот тип учитывает лишь некоторые особенности систем. Примером аналогии может быть исследование Гейзенберга о происхождении ядерных сил.
- Мысленный эксперимент. Основа данного типа — предположение не на практике, не в результате реального эксперимента, а в опровержении какой-либо возможности в теории. Мысленный эксперимент часто использовал в своей работе Эйнштейн. В результате одного из мысленных экспериментов была выведена специальная теория относительности.
- Демонстрация возможности. Основа данного типа — показать непротиворечивость возможности. Это своеобразные мысленные эксперименты, которые демонстрируют, что явление может согласоваться с базовыми теориями и непротиворечиво само по себе. Модель демонстрации возможности был использован для эксперимента геометрии Лобачевского.
Сложность моделируемой системы
Выделяются три уровня систем по сложности:
- простые физические;
- сложные физические;
- биологические системы.
Советский академик Александр Андронов выделил три типа неустойчивых моделей:
- Неустойчивые к преобразованию начальных требований.
- Неустойчивые к небольшим преобразованиям условий, которые не вызывают никаких изменений в числе степеней свободы системы.
- Неустойчивые к небольшим преобразованиям условий, которые вызывают изменения в числе степеней свободы системы.
Неустойчивые модели называют негрубыми. Устойчивые модели — мягкие.
Какие еще бывают модели?
- Игровые (игры).
- Учебные (тренажеры).
- Опытные (уменьшенные копии чего-то).
- Исследовательские (для исследования процессов).
- Имитационные (представляют явления реальности).
Это ряд прототипов, которые выделяются по принципу применения.
Также выделяют материальные и информационные модели. Натуральные — муляжи, макеты. А информационные — прототипы, которые заменяют реальность формально (то есть словесно, графически и т.д.).
Видео:Математическая модель задачиСкачать
Какие параметры нужны для построения математической модели
Рассмотрим принципы построения математических моделей:
- Информационная достаточность. Невозможно построить схему без исследуемой информации. А при полноценном информационном обеспечении (когда все известно), построение не имеет никакого смысла. Поэтому для разработки математической модели важно иметь достаточное количество информации (не избыточное или недостаточное).
- Осуществимость проекта. Схема обязана гарантировать достижение определенной цели исследования.
- Множественность модели. Модель обязана отражать свойства реальных явлений, которые сказываются на эффективности исследования. Должны исследоваться лишь некоторые части реального объекта. Для полноценного исследования необходимо проанализировать некоторое множество (ряд) моделей.
- Агрегирование. Создание в рамках большой и сложной системы несколько подсистем, которые могут помочь решить задачу, поставленную в исследовании.
- Параметризация. Подсистема с определенным параметром выражается в числовой величине. Они не описывают процесс функционирования. Зависимость величины может быть задано таблицей, формулой, графиком. Служит для сокращения объема.
Также все математические модели должны отличаться следующими признаками адекватностью, конечностью, полнотой, упрощенностью, гибкостью.
Видео:Информатика 11 класс (Урок№10 - Математические модели. Стохастические модели.)Скачать
Алгоритм составления, основные моменты
Для того чтобы составить математическую модель необходимо перевести данные задачи в вид математической формы. То есть переделать слова в формулу, уравнение и т.д. Необходимо установить математические связи между всеми условиями задачи.
Стоит помнить, что формула, уравнение математической модели должно полностью соответствовать тексту задачи, потому что иначе цель исследования изменится, а значит и задачу мы будем решать другую.
Представим алгоритм решения математической модели:
- Определяем цель исследования.
- Выделяем свойства системы.
- Выбираем средства, с помощью которых будем исследовать систему.
- Проводим исследование.
- Анализируем получившиеся результаты.
- Корректируем прототип.
Попробуем составить математическую модель на примере простой задачи:
Иван Федорович вернулся с охоты и показал своей семье добычу. Оказалось, что он принес 10 тушек зайцев, которые живут в тайге, 50 % всей добычи — из тундры, а из местного леса, где охотился Иван Федорович нет ни одного животного. Сколько всего дичи купил Иван Федорович в магазине «Мясо диких животных?».
Данный текст нужно представить в виде уравнения. Для этого необходимо установить математические связи между всеми условиями задачи.
- Обращаем внимание на главные математические данные. 10 тушек и 50%.
- Найдем скрытую информацию. Под 50% имеется в виду 50% от всего количества дичи.
- Представим главный вопрос — сколько дичи — в виде X. То есть, X — количество всей дичи, что есть у Ивана Федоровича.
- Процентное соотношение дичи из тундры нужно перевести в штуки, потому что в математических задачах важно все составлять в одинаковых значениях.
- Число дичи из тундры невозможно посчитать в штуках, поэтому переводим в уравнение 50% = 0,5*X. Данное уравнение верно для вычисления количества дичи из тундры.
- Какие данные у нас есть? 10 штук тушек зайцев из тайги, 0,5*X — дичи из тундры, а также X общее количество дичи.
- То есть, общее количество дичи будет равно сумме дичи из тайги и дичи из тундры. То есть, уравнение X = 10 + 0,5X.
- X = 10 + 0,5X — математическая модель.
- Далее решаем линейное уравнение и получаем, что дичи всего 20 штук.
- Ответ: 20.
Обобщение — для того, чтобы построить математическую модель, нужно выбросить всю ненужную информацию из задачи, оставить только нужное и заменяем на математический объект.
📹 Видео
Информатика 9 класс (Урок№4 - Математическое моделирование. Контрольная работа.)Скачать
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ//#МАТЕМАТИКА_ПРОСТОСкачать
Математическое моделирование экономических процессовСкачать
Математическое моделирование - Лекция 1 (09.02.07)Скачать
Математика это не ИсламСкачать
Математическое моделирование социальных процессовСкачать
Математическое моделирование технологических процессовСкачать
Математическое моделированиеСкачать
Математическое моделирование экономических процессовСкачать
Математическая модель задачи. Как составить. Математическая постановка. Исследование операций.Скачать
Математическое моделирование процессовСкачать
Проектная работа - Математические модели оценки процессовСкачать
Олегу Тинькову запрещён вход на Мехмат МГУСкачать