Логика решение логических задач методом уравнений

Видео:ИНФОРМАТИКА 8 класс: Решение логических задач | ВидеоурокСкачать

ИНФОРМАТИКА 8 класс: Решение логических задач | Видеоурок

Решение логических задач в 10-м профильном классе

Видео:Решение логических задач | Информатика 8 класс #15 | ИнфоурокСкачать

Решение логических задач | Информатика 8 класс #15 | Инфоурок

Урок №1

Цель урока: познакомить с основными способами решения логических задач.

Задачи урока:

  • повторить материал по темам «Логические функции» и «Логические законы и правила преобразования логических выражений»;
  • познакомить с основными способами решения логических задач;
  • научить решать логические задачи, используя законы логики;
  • продолжить работу по развитию логического мышления, памяти, внимательности, аккуратности при работе в тетради;
  • побудить познавательный интерес к решению логических задач.

Дополнительные материалы: задачник (приложение 1), презентации (приложение 2, приложение 3).

Видео:Методы решения логических задач | Онлайн-школа Альфа. 5-6 классСкачать

Методы решения логических задач | Онлайн-школа Альфа. 5-6 класс

Ход урока

I. Организационный момент (1мин).

II. Проверка домашнего задания. Повторение (5мин).

Примечание: для повторения используется презентация (приложение 2).

III. Изучение нового материала (20мин).

Примечание: объяснение материала проходит с помощью презентации (приложение 3).

Давным-давно в одной из восточных стран был знаменитый оракул. В отличие от остальных оракулов, его устами вещало не одно божество, а целых три: бог Правды, бог Лжи и бог Дипломатии. Эти божества изображались совершенно одинаковыми фигурами, расположенными в ряд за алтарем, перед которым преклоняли колени люди, ищущие совета. Боги всегда охотно отвечали на вопросы. Но так как они были похожи друг на друга, никто не мог определить, то ли отвечает бог Правды, которому надо верить, то ли бог Лжи, который говорит всегда неправду, то ли бог Дипломатии, который может либо солгать, либо сказать правду. Такое положение было на руку жрецам, ибо любой ответ оракула можно было толковать как угодно.

Но однажды нашелся кощунственный смельчак, который задумал совершить то, что не удавалось самым большим мудрецам. Он решил опознать каждого из богов.

Смельчак вошел в храм и спросил бога, стоящего слева:

– Кто стоит рядом с тобой?

– Бог Правды, – ответил тот.

Тогда смельчак спросил бога, стоящего в центре:

– Бог Дипломатии, – был ответ.

Последний вопрос смельчак задал богу, стоявшему справа:

– Кто стоит рядом с тобой?

– Бог Лжи, – ответил бог.

– Теперь все понятно, – довольно сказал смельчак.

Что же он понял из ответов богов? (Вопрос к классу).

Эта задача принадлежит к классу логических задач, разнообразие которых очень велико. Способов их решения тоже немало. Сегодня на уроке мы с вами научимся решать логические задачи – станем смельчаками или Шерлоками Холмсами, которые могут распознавать лжецов, преступников и распутывать сложные ситуации.

Наибольшее распространение получили следующие четыре способа решения логических задач:

  • с помощью рассуждений;
  • средствами алгебры логики;
  • табличный способ;
  • с помощью графов.

На этом уроке мы рассмотрим первые два способа решения логических задач: с помощью рассуждений и средствами алгебры логики.

Решение логических задач с помощью рассуждений

Этим способом обычно решают несложные логические задачи.

Задача №1. Три девочки – Роза, Маргарита и Анюта представили на конкурсе корзины из выращенных ими роз, маргариток и анютиных глазок. Девочка, вырастившая маргаритки, обратила внимание Розы на то, что ни у одной из девочек имя не совпадает с названием любимых цветов. Какие цветы вырастила каждая из девочек?

Решение.

  1. Девочка, вырастившая маргаритки, обратила внимание на то, что ни у одной из девочек имя не совпадает с названием выращенных цветов, поэтому можно записать следующие условия:
    а) Аня вырастила не анютины глазки.
    б) Маргарита вырастила не маргаритки.
    в) Роза вырастила не розы.
  2. Из диалога Розы и девочки, вырастившей маргаритки, следует, что Роза вырастила не маргаритки. Поэтому она могла вырастить либо розы, либо анютины глазки. Учитывая условие в), получаем, что Роза вырастила анютины глазки.
  3. В связи с условием б) и предыдущим выводом очевидно, что Маргарита вырастила розы.
  4. Следовательно, Аня вырастила маргаритки.

Ответ. Роза вырастила анютины глазки, Маргарита – розы, Аня – маргаритки.

Задача №2. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: «Вадим изучает китайский, Сергей не изучает китайский, Михаил не изучает арабский». Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение.

  1. Имеются три утверждения:
    а) Вадим изучает китайский;
    б) Сергей не изучает китайский;
    в) Михаил не изучает арабский.
  2. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно.
  3. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно.
  4. Остается считать верным третье утверждение, а первое и второе – ложными. Следовательно, Вадим не изучает китайский, изучает китайский Сергей.
  5. Так как Михаил не изучает арабский, то он может изучать лишь японский. Тогда Вадим изучает арабский.

Ответ. Китайский изучает Сергей, Вадим – арабский, Михаил – японский.

Решение логических задач средствами алгебры логики

Обычно используется следующая схема решения:

  1. изучается условие задачи;
  2. вводится система обозначений для логических высказываний;
  3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи;
  4. определяются значения истинности этой логической формулы;
  5. из полученных значений истинности формулы определяются значения истинности введенных логических высказываний, на основании которых делается заключение о решении.

Задача №3. Виновник ночного дорожно-транспортного происшествия скрылся с места аварии. Первый из опрошенных свидетелей сказал работникам ГИБДД, что это были «Жигули», первая цифра номера машины – единица. Второй свидетель сказал, что машина была марки «Москвич», а номер начинался с семерки. Третий свидетель заявил, что машина была иностранная, номер начинался не с единицы. При дальнейшем расследовании выяснилось, что каждый из свидетелей правильно указал либо только марку машины, либо только первую цифру номера. Какой марки была машина и с какой цифры начинался номер?

Решение.

Введем обозначения для логических высказываний: Ж – это «Жигули»; М – это «Москвич»; И – это иностранная машина; Е – номер машины начинается с единицы; С – номер машины начинается с семерки.

Запишем высказывания свидетелей в наших обозначениях:

Логика решение логических задач методом уравнений

Из того факта, что каждый из свидетелей правильно указал либо только марку машины, либо только первую цифру номера, получаем три истинных составных высказывания:

Логика решение логических задач методом уравнений

Если все эти истинные высказывания логически перемножить, то получим следующее истинное логическое высказывание:

Логика решение логических задач методом уравнений

Для решения задачи нужно определить, при каких значениях логических переменных Ж, М, И, Е, С это высказывание истинно.

Упростим выражение, учитывая те обстоятельства, что машина не может быть одновременно и марки «Жигули», и марки «Москвич», и иностранного происхождения, а также то, что номер машины не может одновременно начинаться с единицы и с семерки:

Логика решение логических задач методом уравнений

При выводе мы также использовали закон противоречия и закон исключения констант.Высказывание Логика решение логических задач методом уравненийистинно только при Ж=1, М=0, И=0, Е=0, С=1. Таким образом, мы установили, что виновником дорожно-транспортного происшествия была машина марки «Жигули», номер которой начинался с цифры семь.

Ответ. Машина марки «Жигули», номер которой начинался с цифры семь.

Задача №4. В клуб служебного собаководства на очередную тренировку пришли со своими собаками Антон, Борис, Петр, Виктор и Олег. Желая подшутить над новым инструктором, на вопрос: «Кто же хозяин каждой из собак?» каждый юноша дал один правильный и один неправильный ответ. Антон сказал: «Моя собака – Рекс, а собака Петра – Лайма». Борис сказал: «Рекс – моя собака, а собака Виктора – Джек». Петр сказал: «Собака Виктора – Зевс, а моя собака – Рекс». Виктор сказал: «Моя собака – Джек, а собака Олега – Бичо». Олег сказал: «Да, моя собака – Бичо, а собака Бориса – Зевс». Кто же на самом деле хозяин каждой собаки?

Решение.

Обозначим высказывательную форму «Юноша X – хозяин собаки Y» как Логика решение логических задач методом уравненийи запишем получившиеся логические выражения. Из высказываний молодых людей и того факта, что одно из высказываний истинно, а другое ложно, следуют истинные составные высказывания: Логика решение логических задач методом уравнений

Если все эти истинные высказывания логически перемножить, то получим следующее истинное высказывание:

Логика решение логических задач методом уравнений

Выполните преобразование этого высказывания с учетом того, что у каждого хозяина только одна собака и у каждой собаки только один хозяин.

В результате преобразований получим следующее равносильное высказывание:

Логика решение логических задач методом уравнений

которое истинно только при Логика решение логических задач методом уравнений.

Ответ. Петр – хозяин Лаймы, Борис – Рекса, Виктор – Зевса, Олег – Бичо, Антон – Джека.

IV. Закрепление материала (10мин).

Примечание: у доски решает один учащийся, остальные оформляют решение задач в тетради. Вторую задачу может решить другой учащийся.

1) Вернемся к задаче об оракуле и попробуем решить ее одним из способов.

Примечание: способ решения определяет сам учащийся.

Ответ. Слева – бог Дипломатии, в центре – бог Лжи, справа – бог Правды.

2) Решите логическую задачу №16 из задачника (приложение 1).

Ответ. Победителем этапа гонки стал Шумахер.

Видео:Решение логических выражений. Таблицы истинности. [Алгебра логики] #2Скачать

Решение логических выражений. Таблицы истинности. [Алгебра логики] #2

Как решать логические и математические задачи

Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.

Видео:РЕШЕНИЕ ЛОГИЧЕСКИХ ЗАДАЧ АРИФМЕТИЧЕСКИМ СПОСОБОМ / УЧИМСЯ РЕШАТЬ ЛОГИЧЕСКИЕ ЗАДАЧИ / ОЛИМПИАДАСкачать

РЕШЕНИЕ ЛОГИЧЕСКИХ ЗАДАЧ АРИФМЕТИЧЕСКИМ СПОСОБОМ / УЧИМСЯ РЕШАТЬ ЛОГИЧЕСКИЕ ЗАДАЧИ / ОЛИМПИАДА

Решаем логические задачи

Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.

Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.

К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.

Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.

Видео:8 класс - Информатика - Решение логических задачСкачать

8 класс - Информатика - Решение логических задач

Основные методы решения логических задач

  • метод рассуждений;
  • с помощью таблиц истинности;
  • метод блок-схем;
  • средствами алгебры логики (алгебры высказываний);
  • графический (в том числе, «дерево логических условий», метод кругов Эйлера);
  • метод математического бильярда.

Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):

  • метод последовательных рассуждений;
  • разновидность метода рассуждений — «с конца»;
  • табличный способ.

Метод последовательных рассуждений

Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.

На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.

Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .

Разложи карандаши в описанном порядке.

Логика решение логических задач методом уравнений

Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.

  • Больше всего букв в слове «коричневый», значит, он лежит третьим.
  • Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
  • Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
  • Для зеленого карандаша осталась последняя позиция — он лежит четвертым.

Метод «с конца»

Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.

Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.

Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?

Логика решение логических задач методом уравнений

Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.

Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.

Решение логических задач с помощью таблиц истинности

Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».

Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».

Кто забросил мяч, если только один из троих сказал неправду?

Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.

Логика решение логических задач методом уравнений

Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.

Логика решение логических задач методом уравнений

Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.

И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.

Значит, правильный ответ – мяч забросил синий.

Метод блок-схем

Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.

  • графически (блок-схемой) описываем последовательность выполнения операций;
  • определяем порядок их выполнения;
  • в таблице фиксируем текущие состояния.

Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.

Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!

Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.

Видео:Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6Скачать

Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Логика решение логических задач методом уравнений

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Логика решение логических задач методом уравнений

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

📽️ Видео

1.3 | Рыцари и лжецы. Разные логические задачи | Олимпиадная математика | ЛекториумСкачать

1.3 | Рыцари и лжецы. Разные логические задачи | Олимпиадная математика | Лекториум

НЕПРОСТЫЕ загадки на логику и сообразительность. Смогут ответить лишь немногиеСкачать

НЕПРОСТЫЕ загадки на логику и сообразительность. Смогут ответить лишь немногие

Урок 27. Логика. Решение логических задач.Скачать

Урок 27. Логика. Решение логических задач.

Построение таблиц истинностиСкачать

Построение таблиц истинности

Как решать логические задачиСкачать

Как решать логические задачи

Тайны Кармы Разглашены Невероятное Открытие! НИКОШО и Йонге РинпочеСкачать

Тайны Кармы Разглашены Невероятное Открытие! НИКОШО и Йонге Ринпоче

Топ задач на логику. Решаем вместе с математиком!Скачать

Топ задач на логику. Решаем вместе с математиком!

Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.Скачать

Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.

Информатика 10 класс (Урок№13 - Логические задачи и способы их решения.)Скачать

Информатика 10 класс (Урок№13 - Логические задачи и способы их решения.)

Логические ЗАГАДКИ Тесты на логику и мышлениеСкачать

Логические ЗАГАДКИ Тесты на логику и мышление

Логические выражения, таблицы истинности ,структурная логическая схемаСкачать

Логические выражения, таблицы истинности ,структурная логическая схема

ЗАКОНЫ АЛГЕБРЫ ЛОГИКИСкачать

ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ

Математика 2 класс. «Решение логических задач. 1 часть»Скачать

Математика 2 класс. «Решение логических задач. 1 часть»
Поделиться или сохранить к себе: