Логарифмические уравнения с параметром и их решение

Показательные и логарифмические уравнения с параметром

Видео:Решение логарифмических уравнений. Вебинар | МатематикаСкачать

Решение логарифмических уравнений. Вебинар | Математика

Показательные уравнения c параметром

Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.

Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^)=5) имеет единственное решение.

Заметим, что (a+1 > 0), так как (4^x+4^ > 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_=frac<5±sqrt> .$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±frac$$ (a=-3.5 -) не подходит;
(a=1.5;)

Видео:№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)Скачать

№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)

Логарифмические уравнения с параметром

Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.

Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).

Перейдем от суммы логарифмов к их произведению:

При условии, что (1-4a≥0 ⇔ 0 0).

При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac-frac<sqrt>$$ не подходит, так как ( x>0.)

Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.

При помощи равносильного преобразования приведем наше уравнение к виду:

Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)

Полученное квадратное уравнение должно иметь корни (0 0, \D≥0, \D>0, \ _>0; end $$ $$ begin a>0, \1-4a>0, \ 1/2>0; end $$ $$ begin a>0, \a

Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Логарифмы с параметрами

Видео:Логарифмические уравнения. 11 класс.Скачать

Логарифмические уравнения. 11 класс.

Шкала перевода баллов ОГЭ 2022

Рекомендации по переводу суммы первичных баллов за экзаменационные работы основного государственного экзамена (ОГЭ) в пятибалльную систему оценивания в 2022 году.

Видео:Теория к ЕГЭ 7 | Логарифмическое уравнение с параметромСкачать

Теория к ЕГЭ 7 | Логарифмическое уравнение с параметром

Итоги собеседования по русскому языку

98,7% девятиклассников, сдававших итоговое собеседование по русскому языку в основной срок 9 февраля, успешно справились с заданиями и получили «зачёт». Участие в итоговом собеседовании приняли 1 млн. 373 тыс. учащихся 9 классов из 1 млн. 462 тыс. зарегистрированных.

Видео:Логарифмические уравнения с параметрамиСкачать

Логарифмические уравнения с параметрами

Методическая разработка для учащихся 11-го класса «Решение логарифмических уравнений с параметром»

Разделы: Математика

Ученик проходит в несколько лет
дорогу, на которую человечество
употребило тысячелетие.
Однако его следует вести к цели
не с завязанными глазами, а
зрячим: он должен воспринимать
истину, не как готовый результат,
а должен её открывать.
Учитель должен руководить этой
экспедицией открытий, следовательно,
также присутствовать не только в качестве простого зрителя.
Но ученик должен напрягать свои силы; ему ничто не должно
доставаться даром. Даётся только тому, кто стремится.

Кто любит учиться, никогда
не проводит время в праздности.

Гений состоит из одного процента вдохновения и девяноста девяти процентов потения.

Данная методическая разработка «Решение логарифмических уравнений с параметрами» предназначена для учащихся 11 классов, желающих углубить и расширить свои знания по математике, готовящихся к поступлению в высшие учебные заведения, понимающих, что математику надо учить потому, что она ум в порядок приводит и без неё невозможно стать специалистом в любой отрасли знаний, невозможно стать профессиональным специалистом.
В структуре методической разработки рассматриваются три типа решения логарифмических уравнений с параметрами:

  1. Уравнения, содержащие параметры в логарифмируемом выражении.
  2. Уравнения, содержащие параметры в основании.
  3. Уравнения, содержащие параметры и в основании, и в логарифмируемом выражении.

К сожалению, изучению этих трёх типов решения логарифмических уравнений с параметрами в программе общеобразовательной школы уделяется незаслуженно мало внимания. А подобные уравнения входят в сложную группу заданий, предлагаемых в рамках ЕГЭ, для решения которых необходима хорошая теоретическая подготовка учащихся и уверенное владение технологиями решения математических задач. Выпускник должен не только знать обязательные этапы решения логарифмических уравнений с параметрами, но и хорошо понимать их смысл и назначение, так как многие учащиеся понимают параметр, как «обычное число». Действительно, в некоторых задачах параметр можно считать постоянной величиной, но эта постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной. В других задачах параметром бывает удобно объявить одну из неизвестных.
На вступительных экзаменах в высшие учебные заведения в виде ЕГЭ встречаются два типа задач с параметрами. Первый «для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй «найти все значения параметра, при каждом из которых решения уравнения или неравенства удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В задачах первого типа ответ выглядит так: перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответах второго типа задач с параметром перечисляются все значения параметра, при которых выполнены условия задачи.
Основная цель данной методической разработки: научить учащихся решать нестандартные логарифмические уравнения с параметром, показать разные методы их решений, сделать использование этих методов глубоко осмысленными.
Предлагаемые в этой методической разработке методы решения уравнений не сказочный ключ к решению любой задачи. Но они направляют мысль, сокращают время поиска, формируют навыки решения. Все предлагаемые уравнения снабжены подробными решениями. Показано решение 18 уравнений. Но чтобы получить ощутимую пользу от знакомства с готовым решением, необходимо, уловив новую идею, удержаться и не читать дальше, и попробовать затем решать самостоятельно.

При решении логарифмических уравнений с параметрами необходимо придерживаться следующей схемы:

1. Найти область допустимых значений.
2. Решить уравнение (чаще всего выразить х через а).
3. Сделать перебор параметра а с учетом ОДЗ.
4. Проверить, удовлетворяют ли найденные корни уравнения условиям ОДЗ.
5. Записать ответ.

📺 Видео

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис Трушин

Проще простого! Как решить Логарифмическое Уравнение?Скачать

Проще простого! Как решить Логарифмическое Уравнение?

84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать

84 людей этого не знают! Секретный способ решения Логарифмических Уравнений

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

КАК СЧИТАТЬ ЛОГАРИФМЫ? #егэматематика2022 #егэ2022 #логарифмы #математика #егэ #огэ #shortsСкачать

КАК СЧИТАТЬ ЛОГАРИФМЫ? #егэматематика2022 #егэ2022 #логарифмы #математика #егэ #огэ #shorts

ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?Скачать

ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?

Решение логарифмических уравнений с параметромСкачать

Решение логарифмических уравнений с параметром

Умножаем логарифмы В УМЕ🧠Скачать

Умножаем логарифмы В УМЕ🧠

Логарифмические уравнения 🥷🏿Скачать

Логарифмические уравнения 🥷🏿

Логарифмические уравнения и их системы. Практическая часть. 11 класс.Скачать

Логарифмические уравнения и их системы. Практическая часть. 11 класс.

Логарифмическое уравнение с параметром. Задание 18 (34)Скачать

Логарифмическое уравнение с параметром. Задание 18 (34)

Логарифмическое уравнение с параметром. Задание 18 ЕГЭ по математике (46)Скачать

Логарифмическое уравнение с параметром. Задание 18 ЕГЭ по математике (46)

Интересная задача на логарифмы в ЕГЭСкачать

Интересная задача на логарифмы в ЕГЭ

11 класс, 17 урок, Логарифмические уравненияСкачать

11 класс, 17 урок, Логарифмические уравнения
Поделиться или сохранить к себе: