Логарифмические уравнения из егэ база

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\ x^-4> 0\ x^+x=x^-4 endright.Leftrightarrow left <beginx^+x> 0\ x^-4> 0\ x=-4 endright.Leftrightarrow x=-4′ alt=’log _left ( x^+x right )=log _left ( x^-4 right )Leftrightarrow left <beginx^+x> 0\ x^-4> 0\ x^+x=x^-4 endright.Leftrightarrow left <beginx^+x> 0\ x^-4> 0\ x=-4 endright.Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 endright.Leftrightarrow left <beginleft (2^<log _left ( 4x+5 right )> right )^<frac>=9\ x> -1frac endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac>=9\ x> -1frac endright.Leftrightarrow left <beginsqrt=9\ x> -1frac endright.Leftrightarrow left <begin4x+5=81\ x> -1frac endright.Leftrightarrow left <beginx=19\ x> -1frac endright.’ alt=’2^<log _left ( 4x+5 right )>=9Leftrightarrow left <begin2^frac<<log _left ( 4x+5 right )>>=9\ 4x+5> 0 endright.Leftrightarrow left <beginleft (2^<log _left ( 4x+5 right )> right )^<frac>=9\ x> -1frac endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac>=9\ x> -1frac endright.Leftrightarrow left <beginsqrt=9\ x> -1frac endright.Leftrightarrow left <begin4x+5=81\ x> -1frac endright.Leftrightarrow left <beginx=19\ x> -1frac endright.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\ x> 0\ xneq 1 endright.’ alt=’left <begin12-x> 0\ x> 0\ xneq 1 endright.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Видео:ЛОГАРИФМЫ с нуля за 25 минут | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать

ЛОГАРИФМЫ с нуля за 25 минут | ЕГЭ Математика | Аня Матеманя | Топскул

Логарифмические уравнения.Прототипы В 5
материал для подготовки к егэ (гиа) по алгебре (11 класс) по теме

Подготовка к ЕГЭ

Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать

ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэ

Скачать:

ВложениеРазмер
42626_yu_5.docx104.35 КБ

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Предварительный просмотр:

Проверочная работа по математике.

Тема: «Решение логарифмических уравнений». Задания В5 из открытого банка заданий ЕГЭ(http://mathege.ru/)

Задание В5 в ЕГЭ проверяет умение решать простейшие уравнения. Данная разработка посвящена одному из разделов задания В5 – это решение логарифмических уравнений.

Основной задачей является:

— проверка качества знаний и умений учащихся;

-повышение вычислительной культуры учащихся

Представленная проверочная работа состоит из 4вариантов, в каждом из которых по 13 заданий. Задания данной работы соответствуют прототипам заданий В5 из открытого банка заданий ЕГЭ по математике. Данный материал можно использовать при подготовке к ЕГЭ. Для удобства проверки приведены ответы

Тест по логарифмическим уравнениям, задания В5 из открытого банка заданий ЕГЭ вариант1

  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.

Тест по логарифмическим уравнениям, задания В5из открытого банка заданий ЕГЭ вариант2

  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.

Тест по логарифмическим уравнениям, задания В5 из открытого банка заданий ЕГЭ вариант3.

  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ базаЛогарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.

Тест по логарифмическим уравнениям, задания В5 из открытого банка заданий ЕГЭ вариант4

  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ базаЛогарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Решите уравнение Логарифмические уравнения из егэ база. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.
  • Найдите корень уравнения Логарифмические уравнения из егэ база.

Видео:Старт Щелчка. №14 Неравенства с нуля и до ЕГЭ за 5 часов | Логарифмы, степени для №5,6,12Скачать

Старт Щелчка. №14 Неравенства с нуля и до ЕГЭ за 5 часов | Логарифмы, степени для №5,6,12

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $

0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

🎬 Видео

Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | УмскулСкачать

Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | Умскул

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис Трушин

Логарифмические уравнения / ЕГЭ БАЗА #26659Скачать

Логарифмические уравнения / ЕГЭ БАЗА  #26659

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Проще простого! Как решить Логарифмическое Уравнение?Скачать

Проще простого! Как решить Логарифмическое Уравнение?

Логарифмы с Нуля, Что Такое Логарифм? + ДЗ (ЕГЭ 2024 Математика Профиль и База, 10 и 11 класс)Скачать

Логарифмы с Нуля, Что Такое Логарифм? + ДЗ (ЕГЭ 2024 Математика Профиль и База, 10 и 11 класс)

КАК СЧИТАТЬ ЛОГАРИФМЫ? #егэматематика2022 #егэ2022 #логарифмы #математика #егэ #огэ #shortsСкачать

КАК СЧИТАТЬ ЛОГАРИФМЫ? #егэматематика2022 #егэ2022 #логарифмы #математика #егэ #огэ #shorts

Логарифмы в ЕГЭ⚡️что получилось?!Скачать

Логарифмы в ЕГЭ⚡️что получилось?!

Задача №13 Показательные и логарифмические уравнения | Аня МатеманяСкачать

Задача №13 Показательные и логарифмические уравнения | Аня Матеманя

Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

Решение логарифмических уравнений. Вебинар | МатематикаСкачать

Решение логарифмических уравнений. Вебинар | Математика

Логарифмические уравнения 🥷🏿Скачать

Логарифмические уравнения 🥷🏿

Логарифмические уравнения / ЕГЭ БАЗА #26646Скачать

Логарифмические уравнения / ЕГЭ БАЗА #26646

Интересная задача на логарифмы в ЕГЭСкачать

Интересная задача на логарифмы в ЕГЭ

Логарифмы в ЕГЭ💥 Второй пример с тебя!Скачать

Логарифмы в ЕГЭ💥 Второй пример с тебя!

ЗАДАНИЕ 5 ЕГЭ (ПРОФИЛЬ). ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ.Скачать

ЗАДАНИЕ 5 ЕГЭ (ПРОФИЛЬ). ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ.
Поделиться или сохранить к себе: