, зав. кафедрой математики ДВГГУ
Системы иррациональных, логарифмических и показательных уравнений
Традиционно в контрольные измерительные материалы для проведения единого государственного экзамена по математике включаются задачи позволяющие проверить умения выпускников решать различные системы уравнений. Как правило, это системы из двух уравнений с двумя переменными. Уравнения, входящие в систему могут быть как алгебраическими, в том числе иррациональными, так и трансцендентными. В рамках этой статьи рассмотрим основные методы решения систем с двумя переменными иррациональных, логарифмических и показательных уравнений.
Прежде чем непосредственно переходить к методам решения систем уравнений напомним основные определения и свойства различных функций, которые могут входить в уравнения системы.
Напомним, что два уравнения с двумя неизвестными образуют систему уравнений, если ставится задача о нахождении таких значений переменных, которые являются решениями каждого из уравнений.
Решением системы двух уравнений с двумя неизвестными называется упорядоченная пара чисел, при подстановке которых в систему вместо соответствующих переменных, получаются верные числовые равенства.
Решить систему уравнений – означает найти все ее решения.
Процесс решения системы уравнений, как и процесс решения уравнения, состоит в последовательном переходе с помощью некоторых преобразований от данной системы к более простой. Обычно пользуются преобразованиями, которые приводят к равносильной системе, в этом случае не требуется проверка найденных решений. Если же были использованы неравносильные преобразования, то обязательна проверка найденных решений.
Иррациональными называют уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.
Следует отметить, что
1. Все корни четной степени, входящие в уравнения, являются арифметическими. Другими словами, если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то и значение корня положительно.
2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом корень отрицателен, если подкоренной выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если подкоренное выражение положительно.
Функции y = и y = являются возрастающими на своей области определения.
При решении систем иррациональных уравнений используются два основных метода: 1) возведение обеих частей уравнений в одну и туже степень; 2) введение новых переменных.
При решении систем иррациональных уравнений первым методом следует помнить, что при возведении обеих частей уравнения, содержащего корни четной степени, в одну и туже степень, получается уравнение, которое является следствием первоначального, в связи с этим, в процессе решения могут появиться посторонние корни. При решении иррациональных уравнений часто используется формула = f(x), применение которой в случае четного n может привести к расширению области определения уравнения. По этим (и по другим) причинам при решении иррациональных уравнений в большинстве случаев необходима проверка найденных решений.
Рассмотрим примеры решения систем иррациональных уравнений различными методами.
Пример 1. Решить систему уравнений
Решение. Чтобы избавиться от иррациональности введем новые переменные. Пусть ……………………… (1),
тогда первоначальная система примет вид: . Решая полученную систему, например методом подстановки находим: . Подставим найденные значения в систему (1), получим: . Возведя обе части первого уравнения в квадрат, второго – в четвертую степень, получим систему: , откуда находим:
Нетрудно убедиться в том, что найденное решение последней системы является решением исходной системы.
Пример 2. Решить систему уравнений
Решение. 1. Из второго уравнения системы имеем: . Подставим в первое уравнение системы вместо правую часть равенства, получим: или ………………………..(2). Введем новую переменную: положим …………………….(3) и подставим в уравнение (2), получим квадратное уравнение от переменной : . Находим корни этого уравнения, например, по теореме Виета: . Корень является посторонним, так как через обозначили арифметический корень. Подставим, в (3), получим . Возведем обе части уравнения в квадрат и выразим : .
Подставим, полученное выражение во второе уравнение первоначальной системы: . Возведем обе части полученного уравнения в квадрат, при этом, чтобы не расширить область допустимых значений полученного уравнения, потребуем, чтобы ………………………………(4).
; .
В силу (4) корень является посторонним.
Найдем значение у при : .
Нетрудно убедиться в том, что пара (0; 4) является решением первоначальной системы уравнений.
Пример 3. Решить систему уравнений:
Решение. 1. Заметим, что правая часть первого уравнения должна быть неотрицательной, т. е. .
2. Возведем обе части первого уравнения в квадрат, получим уравнение: . Тогда система примет вид: . Из первого уравнения системы находим значения . Подставим их во второе уравнение и найдем значения переменной :
.Так как найденные значения не удовлетворяют неравенству , пара (10; 5) не является решением первоначальной системы.
.Эта пара значений удовлетворяет неравенству . Нетрудно убедиться в том, что найденная пара чисел является решением первоначальной системы.
Для успешного решения показательных и логарифмических систем уравнений, вспомним определение и свойства логарифма.
Логарифмом числа b по основанию а, называется показатель степени, в которую нужно возвести число а, чтобы получить число b.
Основные свойства логарифмов:
1) ; 6) ;
2) ; 7) ;
3) ; 8) .
4) = ; 9)
5) = ;
Перечислим основные свойства показательной и логарифмической функций:
1) Область определения функции , где — всё множество действительных чисел; функции , где — множество положительных действительных чисел.
2) Множество значений функции — множество положительных действительных чисел; функции — всё множество действительных чисел.
3) Промежутки монотонности: если обе функции возрастают; если — обе функции убывают.
Замечание. В соответствии со вторым свойством, при решении логарифмических уравнений необходимо либо выяснять область допустимых значений уравнения, либо после решения делать проверку.
Показательным называется трансцендентное уравнение, в котором неизвестное входит в показатель степени некоторых величин. При решении показательных уравнений используются два основных метода:
1) переход от уравнения ……….(1) к уравнению ;
2) введение новых переменных.
Иногда приходится применять искусственные приемы.
Первый метод решения показательных уравнений основан на следующей теореме:
Если , то уравнение равносильно уравнению .
Перечислим основные приемы сведения показательного уравнения к уравнению вида (1).
1. Приведение обеих частей уравнения к одному основанию.
2. Логарифмирование обеих частей уравнения (если они строго положительные) по одинаковому основанию.
Замечание. Логарифмировать можно, вообще говоря, по любому основанию, но обычно логарифмируют по одному из оснований степеней, входящих в уравнение.
3. Разложение левой части уравнения на множители и сведение уравнения к совокупности нескольких уравнений вида (1).
Логарифмическое уравнение – это трансцендентное уравнение, в котором неизвестное входит в аргумент логарифма.
При решении логарифмических уравнений используются два основных метода:
1) переход от уравнения к уравнению вида;
2) введение новых переменных.
Замечание. Так как область определения логарифмической функции только множество положительных действительных чисел, при решении логарифмических уравнений необходимо либо находить область допустимых значений уравнения (ОДЗ), либо после нахождения решений уравнения делать проверку.
Решение простейшего логарифмического уравнения вида
……(1)
основано на следующем важном свойстве логарифмов:
логарифмы двух положительных чисел по одному и тому же положительному отличному от единицы основанию равны тогда и только тогда, когда равны эти числа.
Для уравнения (1) из этого свойства получаем: — единственный корень.
Для уравнения вида …………..(2)
получаем равносильное уравнение .
Пример 4. Найдите значение выражения , если пара является решением системы уравнений .
Решение. 1. Исходя из области определения логарифмической функции получаем требования .
2. Так как уравнения системы содержат логарифмы по двум разным основаниям, перейдем к одному основанию 3: . Воспользовавшись свойствами логарифмов, получим систему: . По определению логарифма имеем: . Из второго уравнения системы получаем значения . Учитывая условие , делаем вывод что — посторонний корень. Из первого уравнения последней системы находим значение при : . Таким образом пара (9; 3) является единственным решением первоначальной системы уравнений.
3. Найдем значение выражения
Пример 5. Найдите наибольшую сумму , если пара является решением системы уравнений .
Решение. Имеем систему показательных уравнений. Особенностью этой системы является то, что неизвестные находятся как в показателе степени, так и в ее основании. Первым шагом при решении таких систем обычно стараются оставить неизвестные только в показателе степени.
В нашем случае это нетрудно сделать, выразив из второго уравнения системы: . Подставим полученное выражение для в первое уравнение системы, получим: . Получили показательное уравнение от одной переменной.
Воспользуемся свойствами степени: . В уравнение входят степени с двумя разными основаниями. Стандартным приемом перехода к одному основанию является деление обеих частей уравнения на одну из степеней с наибольшим показателем. В нашем случае разделим, например, на , получим показательное уравнение: . Стандартным методом решения такого вида показательного уравнения является замена переменной. Пусть (замечаем, что на основании свойств показательной функции, значение новой переменной должно быть положительным), тогда получим уравнение . Находим корни этого уравнения ; . Решаем совокупность двух уравнений: . Получаем: ; .
Из уравнения находим соответствующие значения переменной :
; . Таким образом, пары и являются решениями первоначальной системы.
Найдем суммы вида и выберем из них наибольшую, которая очевидно равна 3.
Рассмотрим несколько примеров «комбинированных» систем уравнений в которые входят уравнения различных видов: иррациональные, логарифмические, показательные.
Пример 6. Решить систему уравнений
Решение. 1. На основании свойств логарифмической функции, имеем ,
2. Преобразуем систему, воспользовавшись свойствами степени и логарифма:
3. Второе логарифмическое уравнение системы содержит одинаковые логарифмы, рациональным методом решения таких уравнений является метод замены переменной. Пусть (1), тогда второе уравнение системы примет вид: . Решим это дробно-рациональное уравнение, учитывая, что . Получим: ; . Воспользуемся равенством (1) и выразим через .
При , , откуда . Подставим это выражение в первое уравнение последней системы: . Решим это уравнение: , так как должен быть положительным, то это посторонний корень; , тогда из равенства , получаем .
При , , откуда . Подставим это выражение в первое уравнение последней системы: . Мы уже нашли, что , следовательно равен нулю может быть только второй сомножитель произведения: . Найдем корни этого уравнения: . Очевидно, что — посторонний корень. Следовательно, еще одним решением системы является пара .
Ответ: ; .
Пример 7. Решить систему .
Решение. 1. Отметим, что система смешанного типа, состоит из логарифмического и иррационального уравнений. Учитывая область определения логарифмической функции, имеем: ; ……………….(1)
Область допустимых значений иррационального уравнения определять не будем, чтобы не тратить время на решение системы неравенств, которая при этом получиться. Но тогда обязательно, когда найдем значения переменных, необходимо сделать проверку.
2. Воспользовавшись свойствами логарифма преобразуем первое уравнение системы:
.
Таким образом, из второго уравнения системы мы выразили одну переменную через другую.
3. Подставим во второе уравнение системы вместо переменной ее выражение через , получим иррациональное уравнение от одной переменной, которое будем решать возведением обеих частей в квадрат:
Найдем корни квадратного уравнения: .
Учитывая, что , найдем значения переменной : .
4. Учитывая (1) делаем вывод, что — постороннее решение. Следовательно, пара чисел (3; 5) не является решением первоначальной системы. Пара чисел (1; 3) удовлетворяет условию (1). Непосредственной проверкой убеждаемся, что эта пара удовлетворяет и второму уравнению системы.
Пример 8. Решить систему
Решение. 1. Рассмотрим второе уравнение системы. Чтобы избавиться от иррациональности, уединим квадратный корень и возведем обе части уравнения в квадрат:
Рассмотрим это уравнение как квадратное, относительно переменной : и найдем его корни: ; .
2. Обе части первого уравнения прологарифмируем по основанию 3, тем самым мы избавимся в уравнении от показательных функций по разным основаниям: .
3. Учитывая найденные выражения для переменной , решим две системы уравнений:
А) и Б) .
А) Подставим выражение для в первое уравнение системы, получим: . Воспользуемся формулой перехода к новому основанию: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы А). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.
Б) Подставим выражение для в первое уравнение системы, получим: . Тогда из второго уравнения системы имеем: . Таким образом, пара является решением системы Б). Непосредственно проверяем, что эта пара удовлетворяет второму уравнению первоначальной системы.
Ответ: ;
Задания для самостоятельного решения
1. Решить систему
2. Решить систему
3. Найти , если
4. Решить систему
5. Решить систему
6. Решить систему
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Систематизация методов решения показательных, логарифмических уравнений.
методическая разработка по алгебре (11 класс)
В данной разработке представлены виды показательных и логарифмических уравнений. Для каждого вида рассматривается алгоритм решения и 1-2 приммере.
Материал систематизирован и представляет собой таблицу, которая упрощает работу учащихся.
Видео:Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать
Скачать:
Вложение | Размер |
---|---|
sistematizatsiya_metodov_resheniya_pokazatelnyh_i_ogarifmicheskih_uravneniy.docx | 34.95 КБ |
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Предварительный просмотр:
Систематизация методов решения показательных, логарифмических уравнений.
Справочная таблица для учащихся 10-11 классов по методам решения показательных уравнений и логарифмических уравнений.
a f(x) = b при a > 0 и
a ≠ 1, где b — некоторое действительное число, b > 0
Простейшее показательное уравнение решается почленным логарифмированием. При этом используется свойство обратимости логарифмической функции: одному положительному значению аргумента соответствует одно значение логарифмической функции, и, наоборот, одному значению логарифмической функции соответствует одно значение аргумента. По этому свойству
x 1 = x 2 > 0 ⇐⇒ log a x 1 = log a x 2 (a > 0, a ≠1).
Если в равносильности положить, что
x 1 = a f(x) и x 2 = b,
a f(x) = b ⇐⇒ log a a f(x) = log a b (a > 0, a ≠ 1, b > 0). Отсюда с учётом, что
a f(x) = b ⇐⇒ f(x) = log a b (a > 0, a ≠ 1, b > 0 ).
В частных случаях, когда b = 1 и b = a c , будем иметь:
a f(x) = 1 ⇐⇒ f(x) = 0 (a > 0, a ≠ 1);
a f(x) = a c ⇐⇒ f(x) = c (a > 0, a ≠1).
Равносильность предполагает логарифмирование обеих частей уравнения по основанию a. Иногда удобно логарифмирование по основанию 10. При этом
a f(x) = b ⇐⇒ f(x) lg a = lg b (a > 0, a ≠ 1, b > 0).
Пример 1. В соответствии с равносильностью уравнение
5 7−2x = 121 ⇐⇒ 7 − 2x = log 5 121 ⇐⇒
⇐⇒ x = 3,5 − 0,5 log 5 11 2 ⇐⇒ x = 3,5 −
Пример 2. Решим уравнение
Поскольку 5 x+1 = 5 · 5 x , то 5 x+1 − 5 x = 4 · 5 x
а уравнение равносильно уравнению
Переходим к простейшему показательному уравнению 5 x = 6 с решением x = log 5 6.
a f(x) = b g(x) (a > 0, a ≠ 1, b > 0, b ≠1).
Если b = a, то a f(x) = a g(x) ⇐⇒ f(x) = g(x) (a > 0, a ≠1).
В общем случае данное уравнение может быть решено почленным логарифмированием следующими способами.
- Логарифмирование по основанию 10:
a f(x) = b g(x) ⇐⇒ f(x)lg a = g(x)lg b (a > 0, a ≠1, b > 0, b ≠1).
- Логарифмирование по основанию e:
a f(x) = b g(x) ⇐⇒ f(x)ln a = g(x)ln b (a > 0, a ≠1, b > 0, b ≠1).
- Логарифмирование по основанию a:
a f(x) = b g(x) ⇐⇒ f(x) = g(x)log a b (a > 0, a ≠1, b > 0, b ≠1).
- Логарифмирование по основанию b :
a f(x) = b g(x) ⇐⇒ f(x)log b a = g(x) (a > 0, a ≠1, b > 0, b ≠1).
- Логарифмирование по основанию c :
a f(x) = b g(x) ⇐⇒ f(x)log c a = g(x)log c b (a > 0, a ≠ 1, b > 0, b ≠ 1, c > 0, c ≠1).
Пример. Решим уравнение
3 2(2x+5) · 5 2(3x+1) = 15 5x+6 .
Разделим почленно уравнение на
15 5x+6 = 3 5x+6 · 5 5x+6 .
А затем по формуле:
3 2(2x+5)−(5x+6) · 5 2(3x+1)−(5x+6) = 1 ⇐⇒
⇐⇒ 3 −x+4 · 5 x−4 = 1 ⇐⇒ ) x−4 = 1 ⇐⇒ x = 4. Способ 2.
Прологарифмируем уравнение, например, по основанию 10. Получим равносильное уравнение
2(2x + 5)lg 3 + 2(3x + 1)lg 5 = (5x + 6)(lg 3 +
⇐⇒ (lg 5 − lg 3)x − 4(lg 5 − lg 3) = 0 ⇐⇒ x = 4
A 1 a f(x)+β 1 + A 2 a f(x)+β 2 + . . . + A n a f(x)+β n = B,
где a, A 1 , . . . , A n , B, β 1 , . . . , β n — действительные числа, причём a > 0 и a ≠ 1.
Левую часть уравнения приводим к выражению Aa f(x) ,
где A = A 1 a β1 + A 2 a β2 + . . . + A n a βn .
Тем самым, уравнение равносильно простейшему показательному уравнению
Пример. Показательное уравнение
3 2 √ x +3 2 √ x−1 −9 √ x−1 = 11 ⇐⇒ 3 2 √ x +3 2 √ x−1 −
⇐⇒ 3 2 √ x−2 · (3 2 + 3 − 1) = 11 ⇐⇒ 3 2 √ x−2 =
⇐⇒ 2 √ x − 2 = 0 ⇐⇒ √ x = 1 ⇐⇒ x = 1.
A 1 a f(x)+β1 + A 2 a 2f(x)+β2 + . . . + A n a nf(x)+βn = B, где a, B, A 1 , . . . , A n , β 1 , . . . , β n — действительные числа, причём a > 0 и a ≠1
С учётом свойства степени преобразуем левую часть уравнения, и, тем самым, уравнение приведём к равносильному уравнению:
A 1 a β1 a f(x) + A 2 a β2 a 2f(x) + . . . + A n a βn a nf(x) = B.
уравнение приведём к алгебраическому уравнению
A 1 a β1 y + A 2 a β2 y 2 + . . . + A n a βn y n = B,
которое решаем при y > 0.
2 x − 2 · 0,5 2x − 0,5 x − 1 = 0
2 x − 2 · 1/ 2 2x − 1/2 x − 1 = 0 ⇐⇒ 2 3x − 2 2x − 2 x − 2 = 0. Подстановкой
2 x = y > 0 получим кубическое уравнение
y 3 − y 2 − y − 2 = 0 ⇐⇒ (y − 2)(y 2 + y + 1) = 0 ⇐⇒
так как квадратный трёхчлен y 2 + y + 1 ≠ 0,
как имеющий отрицательный дискриминант
Следовательно, 2 x = 2, а значит, x = 1.
Aa f(x) + Ba f(x)/2 · b f(x)/2 + Cb f(x) = 0,
где A, B, C, a, b — действительные ненулевые числа, причём a > 0 и b > 0
Делением на b f(x) (можно и на a f(x) ) приведём к показательному уравнению вида
A (a/b) f(x) + B(a/b) f(x)/2 + C = 0.
С помощью подстановки
получим квадратное уравнение
Ay 2 + By + C = 0, которое решаем при y > 0.
Пример. Показательное уравнение
2 2x + (2 · 3) x − 3 2x = 0.
Разделив его почленно на 3 2x > 0 ∀ x ∈ R, будем иметь
(2/3) 2x +(2/3) x − 1 = 0.
Полагая (2/3) x = y > 0, получим квадратное уравнение
y 2 + y − 1 = 0 ⇐⇒ ( y + (1 + √5)/2)( y − (− 1 + +√5)/2) = 0,
среди корней которого положительным будет y = (− 1 + √5)/2 .
Тогда (2/3) x = (− 1 + √5)/2 ⇐⇒ x =( lg( − 1 + √5 − lg 2)/(lg 2 − lg 3)
log a f(x) = b при a > 0 и a ≠ 1, (1) где b — некоторое действительное число, является простейшим логарифмическим уравнением
Уравнение решается почленным потенцированием. При этом основываемся на свойстве обратимости показательной функции: одному значению аргумента соответствует одно значение показательной функции, и, наоборот, одному значению показательной функции соответствует одно значение аргумента:
x 1 = x 2 ⇐⇒ a x1 = a x2 (a > 0, a ≠1).
В равносильности положим, что
x 1 = log a f(x) и x 2 = b.
log a f(x) = b ⇐⇒ a log a f(x) = a b (a > 0, a ≠1). Отсюда, с учётом того, что a log a f(x) = f(x) при f(x) > 0, а степень a b > 0, устанавливаем равносильность log a f(x) = b ⇐⇒ f(x) = a b (a > 0, a ≠1).
log 5 log 4 log 3 log 2 = 0 ⇐⇒
⇐⇒ log 4 log 3 log 2 = 1 ⇐⇒ log 3 log 2 =
⇐⇒ log 2 = 3 4 ⇐⇒ x 4 = 3 4 ⇐⇒ |x| = 3 ⇐⇒
log a f(x) = log a g(x) (a > 0, a ≠ 1)
log a f(x) = log a g(x) ⇐⇒
⇐⇒ (a > 0, a ≠1);
log a f(x) = log a g(x) ⇐⇒
⇐⇒ (a > 0, a ≠ 1)
lg x + lg(30 − x) = lg 19 + lg 11 ⇐⇒
⇐⇒ ⇐⇒ ⇐⇒
⇐⇒ ⇐⇒
log a f(x) = log b g(x) (a > 0, a ≠ 1, b > 0, b ≠1)
С помощью преобразований приводим к уравнению вида:
log a f(x) = log b g(x) ⇐⇒ log a f(x) = log a g(x)/log a b ⇐⇒ log a b · log a f(x) = log a g(x) ⇐⇒
⇐⇒ ⇐⇒
⇐⇒
при a > 0, a ≠ 1, b > 0, b ≠1.
Итак, получена равносильность решения уравнения
log a f(x) = log b g(x) ⇐⇒ (a > 0, a ≠1, b > 0, b ≠ 1)
ln x = lg x ⇐⇒ ln x = lnx / ln10 ⇐⇒
⇐⇒ (ln 10 − 1)ln x = 0 ⇐⇒ ln x = 0 ⇐⇒ x = 1. При a > 0, a ≠ 1, b > 0, b ≠ 1 и b ≠ a, уравнение log a x = log b x ⇐⇒ lnx / lna = lnx / lnb ⇐⇒
⇐⇒ (ln b − ln a)ln x = 0 ⇐⇒ ln x = 0 ⇐⇒
log h(x) f(x) = b (b ∈ R) при каждом фиксированном значении аргумента x таком, что f(x) > 0 и f(x) ≠1, является простейшим логарифмическим уравнением.
log h(x) f(x) = b ⇐⇒
В соответствии с равносильностными переходами получаем, что уравнение
log h(x) f(x) = log h(x) g(x)⇐⇒
Пример. В соответствии с равносильностью уравнение
log x 2 401 = 4 ⇐⇒ ⇐⇒ x =
Иначе, учитывая, что 2 401 = 7 4 , получим log x 7 4 = 4 ⇐⇒ 4 log x 7 = 4 ⇐⇒ log x 7 = 1 ⇐⇒
Видео:11 класс, 17 урок, Логарифмические уравненияСкачать
По теме: методические разработки, презентации и конспекты
Урок по теме: «Решение показательных, логарифмических и тригонометрических уравнений» Итоговое повторение 10 класс
Урок по теме:«Решение показательных, логарифмических и тригонометрических уравнений» Итоговое повторение10 класс (информационно-технологический профиль)По учебнику Никольского«Алгебра и нач.
Решение показательных, логарифмических и иррациональных уравнений.
Обобщающий урок по алгебре и началам анализа «Решение показательных, логарифмических и иррациональных уравнений». Урок с игровыми элементами для учащихся 10 класса. Целью урока является развитие позна.
Решение показательных, логарифмических и иррациональных уравнений.
Обобщающий урок по алгебре и началам анализа «Решение показательных, логарифмических и иррациональных уравнений». Урок с игровыми элементами для учащихся 10 класса. Целью урока является развитие позна.
Метод.разработка по теме: «Методы решения показательных уравнений»
В школьном курсе математики важное место отводится решению показательных уравнений и неравенств и системам, содержащие показательные уравнения. Впервые ученики встречаются с показательными уравнениями.
Урок на тему «Методы решения показательных, логарифмических уравнений и неравенств»
Этот урок был проведен в 11 классе. Тип урока — урок обобщения и систематизации пройденного материала с целью подготовки к ЕГЭ.
Презентация к уроку «Решение систем показательных логарифмических уравнений»
В презентации рассматриваются методы решения систем показательных логарифмических уравнений. Разобраны примеры с решением для простых систем и систем с нестандартными заменами. Презентация содержит до.
Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений»
Методическая разработка открытого урока «Показательные уравнения. Методы решения показательных уравнений".
Видео:Логарифмические уравнения. 11 класс.Скачать
Решение логарифмических уравнений и систем уравнений. Подготовка к ЕГЭ
Разделы: Математика
Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетие.
Однако его следует вести к цели не с завязанными глазами, а зрячим:
он должен воспринимать истину, не как готовый результат, а должен её открывать.
Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать
не только в качестве простого зрителя. Но ученик должен напрягать свои силы;
ему ничто не должно доставаться даром.
Даётся только тому, кто стремится.
(А. Дистервег)
Форма урока: комбинированный урок
Тип урока: Урок повторного контроля знаний.
Обобщение и закрепление пройденного материала.
Цели урока:
- Образовательная — обобщение знаний учащихся по теме «Логарифмические уравнения и системы уравнений; закрепить основные приемы и методы решения логарифмических уравнений и систем уравнений; ознакомить учащихся с видами заданий повышенной сложности по данной теме в ЕГЭ.
- Развивающая — развитие логического мышления для сознательного восприятия учебного материала, внимание, зрительную память, активность учащихся на уроке. Предоставить каждому из учащихся проверить свой уровень подготовки по данной теме.
- Воспитывающая — воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности. Осуществить индивидуальный подход и педагогическую поддержку каждого ученика через разноуровневые задания и благоприятную психологическую атмосферу.
Задачи урока:
- выработать у учащихся умение пользоваться алгоритмом решения логарифмических уравнений.
- осуществить формирование первоначальных знаний в виде отдельных навыков после определенной тренировки решения уравнений и систем уравнений.
- познакомить учащихся с частными случаями и отработать навыки по решению таких уравнений и систем уравнений.
Методы и педагогические приемы:
- Методы самообучения
- Приемы устного опроса.
- Приемы письменного контроля.
- Коллективная учебная деятельность.
- Организация работы в группах.
- Повышение интереса к учебному материалу.
Оборудование:
- компьютер, мультимедийный проектор и экран;
- тетради;
Раздаточный материал: задания для самостоятельной работы.
План урока:
- Организационный момент (1 мин)
- Проверка домашнего задания (3 мин)
- Входной контроль (повторение теоретического материала) (15 мин)
- Этап обобщения знаний учащихся. Решение уравнений и систем уравнений (45 мин)
- Разноуровневая самостоятельная работа (проверка знаний учащихся) (20 мин)
- Итоги урока (4 мин)
- Домашнее задание (2 мин)
1. Организационный момент
Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.
2. Проверка домашнего задания
Установить правильность и осознанность выполнения домашнего задания всеми учащимися; установить пробелы в знаниях.
3. Входной контроль (повторение теоретического материала)
Организация устной фронтальной работы с классом по повторению логарифмических формул и способов решения логарифмических уравнений.
Решение простейших уравнений:
а) и
б) и
2) Найдите Х, если х>0:
[1/5]
[4]
Перечислите: основные способы решения логарифмических уравнений.
Способы решения логарифмических уравнений
- По определению логарифма.
- Метод потенцирования.
- Метод введения новой переменной.
- Решение уравнений логарифмированием его обеих частей.
- Функционально-графический способ.
На экране уравнения:
- log2(3 — 6x) = 3
- lg(х 2 — 2х) = lg (2х + 12)
- 5 х + 1 — 5 х — 1 = 24
- х lg х = 10000
- 3 2х + 5 = 3 х + 2 + 2
- log3 2 x — log3 x = 3
- log2x — log4x = 3
- 2 x = x 2 — 2x
Среди данных уравнений выбрать логарифмические. Определить способ решения каждого уравнения. Решите уравнения.
По окончанию работы правильность решения уравнений осуществляется с помощью экрана.
Устно ответить на следующие вопросы (если имеется не один корень):
- Найти наименьший корень уравнения.
- Найти сумму корней уравнения.
- Найти разность корней уравнения.
- Найти произведение корней уравнения.
- Найти частное корней уравнения
Самооценка и взаимооценка деятельности учащихся (результаты заносятся в листы самоконтроля).
4. Этап обобщения знаний учащихся
Решение логарифмических уравнений из заданий ЕГЭ части В и С.
№ 1 (В) Найдите корень (или сумму корней, если их несколько) уравнения log6(3x + 88) — log6 11 = log6 x. [1]
№ 2 (B) Найдите произведение всех корней уравнения
. [1]
№ 3 (B) Найдите сумму корней уравнения = log4 (x — 3) + 2. [2]
№ 4 (C) найти наибольший корень уравнения: log2(2+5)+ log0,5(-х-0,5) = 1 [-4]
№ 5 (C) Решите уравнение — log6 x + 34 = () 2 + x. [2]
Уравнения №1-3 решает по два ученика на обратных крыльях доски с последующей проверкой решения всем классом.
Уравнение №4,5 решает ученик с подробным комментарием.
По окончании самооценка и взаимооценка учащихся (результаты заносятся в листы самоконтроля).
Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:
log a x = b, a > 0, a 1.
log a f(x) = b, a > 0, a 1.
Эти уравнения решаются на основании определения логарифма: если logb a = c, то a = b c .
Решить уравнение log2 x = 3.
Решение. Область определения уравнения x > 0. По определению логарифма x = 2 3 , x = 8 принадлежит области определения уравнения.
Уравнения вида loga f(x) = b, a > 0, a 1.
Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x).
Обычно область определения находится отдельно, и после решения уравнения f(x) = a b проверяется, принадлежат ли его корни области определения уравнения.
Пример. Решить уравнение log3(5х — 1) = 2.
ОДЗ: 5х — 1 > 0; х > 1/5.
Пример. Решить уравнение
Решение. Область определения уравнения находится из неравенства 2х 2 — 2х — 1 > 0. Воспользуемся определением логарифма:
Применим правила действий со степенями, получим 2х 2 — 2х — 1 = 3. Это уравнение имеет два корня х = -1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х 2 — 2х — 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.
Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе
Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x)) c = b или равносильного уравнения проверяется, принадлежат ли его корни найденной области.
Пример. Решить уравнение
Решение. Данное уравнение равносильно системе
Суть метода заключается в переходе от уравнения
На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).
Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.
Решение. Область определения уравнения найдётся из системы неравенств:
х> -1,5+ , х 2 — 3х — 5 = 7 — 2х,
х 2 — х — 12 = 0, откуда х1 = -3, х2 = 4. Число 4 не удовлетворяет системе неравенств.
Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.
Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:
logb a + logb c = logb (a*c), где a > 0; c > 0; b > 0, b 1,
logb a — logb c = logb (a/c), где a > 0; c > 0; b > 0, b 1,
m logb a = logb a m , где a > 0; b > 0, b 1; m R.
Пример 1. Решить уравнение log6 (x — 1) = 2 — log6 (5x + 3).
Решение. Найдём область определения уравнения из системы неравенств
Применяя преобразования, приходим к уравнению
log6 ((x — 1)(5x + 3)) = 2, далее, потенцированием, к уравнению
(х — 1)(5х + 3) = 36, имеющему два корня х = -2,6; х = 3. Учитывая область определения уравнения, х = 3.
Пример 2. Решить уравнение
Решение. Найдём область определения уравнения, решив неравенство (3x — 1)(x + 3) > 0 методом интервалов.
Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма (х + 3) 2 = 1, х = -4, х = -2. Число х = -2 посторонний корень.
Пример 3. Решить уравнение log2 (6 — x) = 2 log6 x.
Решение. На области определения 0 2 , откуда х = -3, х = 2. Число х = -3 посторонний корень.
Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:
Пример 1. Решить уравнение
Решение. Область определения уравнения 1 1. Приведём логарифмы к основанию 3, используя формулу (4).
Пример 3. Решить уравнение
Решение. Область определения уравнения x > -1, x 0. Приведём логарифмы к основанию 3, используя формулу (2).
Умножим обе части уравнения на log 3(x + 1) ? 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)-1) 2 = 0, откуда log 3(x + 1) = 1 и x = 2.
3. Введение новой переменной
Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.
где a > 0, a 1, A, В, С — действительные числа.
Пусть t = loga f(x), t R. Уравнение примет вид t 2 + Bt + C = 0.
Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.
Пример 1. Решить уравнение lg 2 x — lg x — 6 = 0.
Решение. Область определения уравнения — интервал (0; ).Введём новую переменную t = lg x, t R.
Уравнение примет вид t 2 — t — 6 = 0. Его корни t1 = -2, t2 = 3.
Вернёмся к первоначальной переменной lg x = -2 или lg x = 3, х = 10 -2 или х = 10 3 .
Оба значения x удовлетворяют области определения данного уравнения (х > 0).
Пример 2. Решить уравнение
Решение. Найдём область определения уравнения
Применив формулу логарифма степени, получим уравнение
Так как х 2 — 4t + 4 = 0
имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (-x) = 2, отсюда —х = 9, х = -9. Значение неизвестной принадлежит области определения уравнения.
где a > 0, a 1, A, В, С — действительные числа, A 0, В 0.
Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) 0. Учитывая, что loga f(x) logf(x) a=1
(свойство logb a = 1/ loga b), получим уравнение
Замена loga f(x)=t, t R приводит его к квадратному At 2 + Ct + B = 0.
Из уравнений loga f(x)= t1, logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения:
f(x) > 0, f(x) 1.
Пример. Решить уравнение
Решение. Область определения уравнения находим из условий x+2>0, x+2 1, т.е. x >-2, x -1.
Умножим обе части уравнения на log5 (x+2) 0, получим
или, заменив log5 (x+2) = t, придем к квадратному уравнению
Возвращаемся к первоначальной переменной:
Оба корня принадлежат области определения уравнения.
ОДЗ: x > 0, х 1
Используя формулу перехода к новому основанию, получим
Ответ:
4. Приведение некоторых уравнений к логарифмическим логарифмированием обеих частей.
Переход от уравнения вида f(x) = g(x) к уравнению loga f(x) = loga g(x), который возможен если f(x) >0, g(x) >0, a >0, a 1, называется логарифмированием.
Методом логарифмирования можно решать:
Уравнения вида
Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, затем применим формулы логарифма степени и произведения
Приведем подобные и получим линейное уравнение относительно loga x.
Пример. Решить уравнение 3 2log 4 x+2 =16x 2 .
Решение. Область определения x >0. Прологарифмируем обе части по основанию 4.
Используя свойства логарифмов, получим
Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, получим
Применим формулы логарифма степени и логарифма произведения
Введем новую переменную t=loga x , t R. Решив квадратное уравнение At 2 + (B-а)t-loga C=0, найдем его корни t1 и t2. Значение x найдем из уравнений t1 = loga x и t2=loga x и выберем среди них принадлежащие области определения уравнения.
Пример 1. Решить уравнение
Решение. Область определения уравнения х > 0. Так как при х > 0 обе части уравнения положительны, а функция y = log3 t монотонна, то
Введём новую переменную t, где t = log3 x, t R.
Пример 2. Решить уравнение
Решение. Область определения уравнения х >1. Обе части уравнения положительны, прологарифмируем их по основанию 2, получим
Применим формулы логарифма степени и логарифма частного:
Введем новую переменную t=log2x, получим квадратное уравнение t 2 — 3t + 2 = 0,
1) Найти наибольший корень уравнения: lq(x+6) — 2 = 1 /2lq(2x -3) — lq25
3) Пусть (х0;y0) — решение системы уравнений
4) Пример .Решите систему уравнений
Решение. Решим эту систему методом перехода к новым переменным:
Заметим, что x>0 и у R является областью определения данной системы.
Логарифмируя обе части второго уравнения по основанию 3, получим:
Тогда по обратной теореме Виета переменные и и v являются корнями квадратного уравнения
z 2 -z-12 = 0
Следовательно, решения данной системы найдем как множество решений совокупности двух систем а) и б):
а) б)
Решениями указанных систем являются соответственно пары (27;4), (; -3).
Ответ: (27; 4), (; -3).
5) Пример. Решите систему уравнений
Перейдем к новым переменным:
x = 2 u >0, 1оg2 у = v, у = 2 v >0.
В новых переменных данная система имеет вид:
Следовательно, и и v являются корнями квадратного уравнения :
z 2 -42 + 3 = 0
Отсюда следует, что достаточно решить систему
Другое решение найдем из-за симметричности х и у, т. е. если (х; y) — решение, то (у; х) также является решением.
5. Самостоятельная работа.
1. Вычислите значение выражения: 11-3log3
2. Решите уравнения:
3.Решите систему уравнений :
1. Вычислите значение выражения: 13-3log2
2. Решите уравнения:
6.Подведение итогов урока:
Учитывая контингент учащихся данного класса, можно сделать вывод о том, что в целом учащиеся усвоили материал по данной теме.
🌟 Видео
Показательные уравнения. 11 класс.Скачать
Проще простого! Как решить Логарифмическое Уравнение?Скачать
Логарифмические уравнения и их системы. Практическая часть. 11 класс.Скачать
84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать
Решение логарифмических уравнений. Вебинар | МатематикаСкачать
11 класс, 12 урок, Показательные уравненияСкачать
10 класс. Алгебра. Системы показательных уравнений.Скачать
✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать
Умножаем логарифмы В УМЕ🧠Скачать
Показательные неравенства и их системы. Вебинар | МатематикаСкачать
Это просто! Как решать Показательные Неравенства?Скачать
Как решать Показательные Уравнения? (часть 2)Скачать
ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать
Как решать системы показательных уравнений. Урок№ 27Скачать
Задача №13 Показательные и логарифмические уравнения | Аня МатеманяСкачать