Построим график функции в полярных координатах r=r(φ),
где 0 Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x|) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x exp(x) Функция — экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x ctg(x) Функция — Котангенс от x arcctg(x) Функция — Арккотангенс от x arcctgh(x) Функция — Гиперболический арккотангенс от x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x gamma(x) Гамма-функция LambertW(x) Функция Ламберта x! или factorial(x) Факториал от x
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
© Контрольная работа РУ — калькуляторы онлайн
Видео:Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
4.6. Как построить линию в полярных координатах?
Собственно:
– Сначала нужно построить полярную систему координат: отметить полюс, изобразить полярную ось и указать масштаб. Впрочем, этот пункт можно выполнить позже.
– Определяем область определения функции – угловые секторы, в которых линия существует, и в которых нет. Тонко прочерчиваем соответствующие угловые направления (прямые и / или лучи, разграничивающие эти секторы). Лучше пунктиром.
– В большинстве случаев потребуется найти десяток-другой точек, принадлежащих линии. Но иногда можно обойтись меньшим количеством, а то и вовсе отделаться схематическим чертежом.
– На следующем шаге следует прочертить угловые направления точек (тонкие прямые) и отметить на них найденные точки. Как это сделать с помощью каменного топора транспортира, циркуля и линейки, я подробнейшим образом объяснил выше.
– И, наконец, отложенные точки нужно аккуратно-аккуратно соединить линией (линиями).
Отработаем алгоритм на более основательных типовых задачах:
Задача 120
Построить по точкам линию, заданную в полярной системе координат уравнением , рассматривая значения угла с интервалом в рад. Найти уравнение линии в прямоугольной системе координат.
Решение: найдём область определения. Поскольку полярный радиус неотрицателен, то:
Неравенство опять же удобно решить графически. Мысленно либо на черновике изобразите график косинуса (см. Приложение Тригонометрия) и прямой . Что означает неравенство ? Оно означает, что нас устраивает та часть косинусоиды, которая не ниже прямой . График косинуса полностью удовлетворяет этому условию, поэтому может принимать любые значения, и нам предстоит «перепахать» весь круг от 0 до , причём, по условию сделать это требуется строго с интервалом в рад. (22,5 градусов). Ложку в зубы, калькулятор в руки:
и так далее, пока не будет пройден весь оборот до «двух пи»…., но хочется ли вам сидеть с калькулятором… и ложкой? J Используйте Приложение Геометрический Калькулятор, который позволит буквально в пару щелчков вычислить все значения !
Вычисления, как правило, не расписывают подробно, а сразу заносят их результаты в таблицу:
Изобразим на чертеже полярную систему координат и угловые направления – тонкие прямые, соответствующие вышеуказанным углам. Здесь можно опять воспользоваться Геометрическим Калькулятором, где все направления уже прочерчены, но вы должны быть готовы к самым суровым обстоятельствам 🙂
Если у вас под рукой нет ни программы, ни транспортира, ни даже линейки, то используйте мой handmade-продукт – выполните этот чертёж, ориентируясь по клеточкам:
(углы проставлены для удобства, и на чистовике их записывать не надо)
До сих пор бережно храню этот листок бумаги, чтобы лет через 10-20 продать его антикварном аукционе J
… Шутки шутками, а оперативная память моего первого компьютера ZX Spectrum составляла 32 килобайта. КИЛОбайта. При этом программисты умудрялись заталкивать туда аркадные игры с сотнями экранов и отличной графикой (по меркам 8-разрядных машин, конечно). …А ведь с той поры прошло немногим больше двух десятилетий.
После ностальгических воспоминаний отметим найденные точки на чертеже и аккуратно соединим их линией:
Напоминаю, что одинаковые значения радиуса эффективнее засекать циркулем,
а слишком малые значения для углов допустимо отметить и «на глазок».
Данная кривая называется кардиоидой. Найдём её уравнение в декартовой системе координат. Для этого используем знакомый приём – домножим обе части уравнения на «эр»:
И по формулам перехода к прямоугольным координатам , получим:
Перенесём «икс» налево и возведём обе части в квадрат:
Дальнейшее возведение левой части в квадрат только усложнит запись, поэтому результат целесообразнее оставить в таком виде.
Из полученного уравнения следует, что кардиоида – это алгебраическая линия 4-го порядка, и обратите внимание, насколько сложной получилась её формула по сравнению с полярной системой координат. Алгебраическим линиям 3-го, 4-го, 5-го, 6-го и высших порядков посвящены серьёзные исследования, и желающие без труда могут отыскать море информации по данной теме. Хорошая тема для курсовика, кстати, или реферата. Ну а я, как обычно, предлагаю полезную и здоровую пищу на каждый день:
Задача 121
Линия задана уравнением в полярной системе координат. Треба:
1) построить линию по точкам, придавая значения через интервал , начиная
с и заканчивая ;
2) найти уравнение линии в декартовой системе координат;
3) определить вид кривой.
Типовая формулировка, предвещающая час (а то и больше) усердного пыхтения,
а нередко и чертыханья студента. Но только не того, кто прочитал эту книгу! Примерный образец оформления задачи в конце урока.
Рассмотрим ряд других важных особенностей решения:
Задача 122
Линия задана уравнением в полярной системе координат. Требуется:
1) построить линию по точкам, начиная от до и придавая значения через промежуток ;
2) найти уравнение данной линии в прямоугольной системе координат;
3) назвать линию, найти координаты фокусов и эксцентриситет.
Решение: 1) найдём область определения: .
Заметьте, что ноль в знаменателе нас тоже не устраивает, и поэтому неравенство строгое. Перенесём косинус направо: и развернём избушку – к нам передом, а к лесу задом:
Неравенство несложно решить аналитически, но для лучшего понимания я опять воспользуюсь графическим методом. Мысленно или на черновике изобразим графики , при этом нас будет интересовать только один период – от до :
Условию удовлетворяет та часть синусоиды, которая расположена ПОД прямой .
То есть, в нашем распоряжении оказываются почти все значения угла за исключением «макушки», расположенной на симметричном отрезке .
Таким образом, . Арккосинус составляет примерно , поэтому из рассмотрения исключаем углы и . Заполним расчётную таблицу с прочерками в соответствующих ячейках:
Изобразим полярную систему координат и лучи , между которыми нет точек линии. Прочертим угловые направления найденных точек и с помощью циркуля сделаем засечки. Аккуратно соединим отмеченные точки линией (точки, соответствующие углам , не вместились на чертёж):
2) Найдём уравнение линии в прямоугольной системе координат. Судя по всему должна получиться гипербола. Избавляемся от дроби:
Используем формулы перехода
и дальнейшее знакомо из задач с линиями второго порядка:
– искомое уравнение.
3) Данная линия представляется собой гиперболу с центром симметрии в точке , действительной полуосью , мнимой полуосью .
Вы спрОсите: «но в полярной же системе координат прорисовалась только одна ветвь гиперболы, поэтому не ошибочно ли сейчас говорить о целой гиперболе?». Не ошибочно! И вот по какой причине: если подразумевать обобщённую полярную систему координат с отрицательными значениями «эр», то при значениях угла из интервала прорисуется левая ветвь! Желающие могут провести самостоятельную проверку и анализ этого факта. Я не сторонник и даже противник обобщенных полярных координат, но в данном случае всё получается ловко и очень хитро – можно как бы и не оговариваться о том, что на чертеже только одна ветвь гиперболы.
Вычислим координаты фокусов и эксцентриситет. По условию уравнение не нужно приводить к каноническому виду, а значит, требуемые вещи проще найти напрямую – с учётом параллельного переноса гиперболы, к тому же, она не повёрнута.
Вычислим значение и поправкой на параллельный перенос в точку найдём фокусы:
Эксцентриситет:
Готово. Педантичные люди могут ещё записать развёрнутый ответ.
Заключительное задание для самостоятельного решения:
Задача 123
Линия задана уравнением в полярной системе координат. Требуется:
1) построить линию по точкам, начиная от до и придавая значения через промежуток ;
2) найти уравнение данной линии в прямоугольной системе координат и определить её вид;
3) привести уравнение к каноническому виду и выполнить чертёж в прямоугольной системе координат. Найти фокусы кривой и её эксцентриситет.
Внимательно проанализируйте, что и в каком порядке требуется выполнить по условию. Сам много раз «налетал» – краем глаза показалось одно, а нужно совсем другое. В образце решения приведение уравнения линии 2-го порядка к каноническому виду выполнено строгим академическим способом.
Когда удобно использовать полярные координаты? Ну, конечно, когда мы имеем дело со всевозможными окружностям, дугами, кругами, эллипсами, спиралями и т.д. А причина простА – уравнения получаются простые.
На основе полярных координат плоскости базируются цилиндрические и сферические координаты пространства. В частности, угловые величины широко используются в воздушной навигации и астрономии. Действительно, представьте земной шар (а если строго, эллипсоид), эллиптические орбиты планет и вы поймёте, что «распиаренная» прямоугольная система координат как-то здесь совсем «не в тему».
Видео:Построение кривой в полярной системе координатСкачать
Упражнения
1. Нарисуйте кривую, задаваемую уравнением r = sin 4 φ .
2. Нарисуйте кривую, задаваемую уравнением r = cos φ .
3. Для параболы x 2 = 4 ay выберем в качестве полярной оси луч, идущий по оси Oy с началом в фокусе F (0, a ) параболы. Переходя от декартовых к полярным координатам, покажите, что парабола с выколотой вершиной задается уравнением
.
4. Докажите, что уравнение
задает эллипс, если 0 > 1.
5. Нарисуйте спираль Архимеда, заданную уравнением r = — φ . Чему равно расстояние между соседними витками этой спирали?
6. Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет траектория его движения относительно земли?
7. Нарисуйте гиперболическую спираль , задаваемую уравнением r = .
8. Нарисуйте спираль Галилея , которая задается уравнением r = a 2 ( a > 0). Она вошла в историю математики в XVII веке в связи с задачей нахождения формы кривой, по которой двигается свободно падающая в области экватора точка, не обладающая начальной скоростью, сообщаемой ей вращением земного шара.
9. Нарисуйте кривую, задаваемую уравнением r = | |.
10. Нарисуйте кривую, задаваемую уравнением r = .
11. Нарисуйте кривую, задаваемую уравнением r = .
12. Найдите параметрические уравнения: а) спирали Архимеда; б) логарифмической спирали.
1. Березин В. Кардиоида //Квант. – 1977. № 12.
2. Березин В. Лемниската Бернулли //Квант. – 1977. № 1.
3. Берман Г.Н. Циклоида. – М.: Наука, 1975.
4. Бронштейн И. Эллипс. Гипербола. Парабола / Такая разная геометрия. Составитель А.А. Егоров. – М.: Бюро Квантум, 2001. — / Приложение к журналу «Квант» № 2/2001.
5. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые. – 3-е изд. – М.: МЦНМО, 2000.
6. Маркушевич А.И. Замечательные кривые. – М.- Л.: Гос. изд. течн. – теор. лит., 1951. — / Популярные лекции по математике, выпуск 4.
7. Савелов А.А. Плоские кривые. – М.: ФИЗМАТЛИТ, 1960.
8. Смирнова И.М., Смирнов В.А. Кривые. Курс по выбору. 9 класс. – М.: Мнемозина, 2007.
9. Смирнова И.М., Смирнов В.А. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2011.
10. Смирнова И.М., Смирнов В.А. Компьютер помогает геометрии. – М.: Дрофа, 2003.
📹 Видео
Полярная система координатСкачать
Занятие 01. Часть 3. Полярная система координатСкачать
Полярная система координат.Скачать
Площадь фигуры, заданной в полярной системе координатСкачать
Полярная система координатСкачать
Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Линии в полярных координатах и параметрически заданныеСкачать
№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать
Кривые, заданные параметрическиСкачать
Видеоурок "Полярная система координат"Скачать
Глаза гипножабы и площадь фигур в полярной системе координатСкачать
Способы задания функций. Неявная функция. Функция заданная параметрически и в полярных координатах.Скачать
Полярная система координат на плоскостиСкачать
Как построить кривую, заданную параметрическиСкачать
Площадь фигуры через двойной интеграл в полярных координатахСкачать
Площади 12Скачать
§52 Полярная система координатСкачать