К линиям первого порядка относятся те линии, для которых задающее их уравнение (3.9) содержит переменные X и у только в первой степени. Иными словами, такие линии описываются уравнениями вида
Где А, В и С — постоянные числа. Из этого уравнения можно выразить переменную У как функцию от аргумента Х При В ≠ 0:
Уравнение (3.11) называют Уравнением прямой с угловым коэффициентом K = tg φ, где φ — угол наклона прямой к положительному направлению оси Ох (рис. 3.9). Если K = 0, то прямая параллельна оси Ох и отстоит от нее на B масштабных единиц.
Определим самые необходимые элементы знания о прямых на плоскости.
1. Кроме «классического» уравнения прямой (3.11) следует знать еще две его разновидности. Первая из них — это уравнение прямой с заданным угловым коэффициентом K, проходящей через заданную точку М0(X0, У0):
Другой вид — это уравнение прямой, проходящей через две заданные точки на плоскости M1(X1, Y1) и М2(х2, у2):
2. Угол между прямыми. Рассмотрим две прямые, заданные уравнениями У = K1X + B1 и У = K2X + B2, где K1 = tg φ1 И K2 = tg φ2 (рис. 3.10). Пусть φ — угол между этими прямыми. Тогда φ = φ2 — φ1 и мы получаем tg φ = tg (φ2 — φ1) = 
Формула (3.12) определяет один из углов между пересекающимися прямыми; второй угол равен π — φ.
Из равенства (3.12) вытекают условия параллельности и перпендикулярности прямых. В самом деле, если прямые параллельны, то
Если прямые перпендикулярны, то α2 = π/2 + α1, откуда tg α2 = — ctg α1 = -1 / tg α1, или окончательно
Пример 1. Найти угол между прямыми, заданными уравнениями У = 2X — 5 и У = -3X + 4.
Решение. Подставляя в формулу (3.12) значения K1 = 2 и K2 = -3, имеем
Откуда получаем, что один из углов равен φ = π / 4.
3. Расстояние от точки до прямой. Пусть прямая задана уравнением общего вида (3.10). Тогда расстояние D От произвольной точки М0(X0, Y0) до прямой (рис. 3.11) дается формулой
- Алгебраические уравнения линий на плоскости
- Теорема (3.1) об инвариантности порядка алгебраической линии
- Прямая линия на плоскости и в пространстве с примерами решения
- Виды уравнений прямой
- Основные задачи о прямой на плоскости
- Прямая линия на плоскости и в пространстве. Системы координат на плоскости
- Основная теорема о прямой линии на плоскости
- Различные виды уравнений прямой на плоскости
- Взаимное расположение двух прямых на плоскости
- Прямая линия в пространстве
- Взаимное расположение двух прямых в пространстве
- Вычисление уравнения прямой
- 📹 Видео
Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Алгебраические уравнения линий на плоскости
Напомним, что многочленом степени одной переменной называется выражение вида
где — действительные числа (коэффициенты многочлена), — старший коэффициент, — свободный член. Степень многочлена обозначается .
Многочленом двух переменных называется выражение вида
где — действительные числа (коэффициенты многочлена), и — целые неотрицательные числа. Число
называется степенью многочлена двух переменных.
Алгебраической линией на плоскости называется множество точек, которое в какой-либо аффинной системе координат может быть задано уравнением вида
где — многочлен двух переменных и .
Уравнение вида (3.4) называется алгебраическим уравнением с двумя неизвестными. Степенью уравнения (3.4) называется степень многочлена . Одна и та же линия может быть задана уравнением вида (3.4) с многочленами разных степеней. Порядком алгебраической линии называется наименьшая из степеней этих многочленов.
Всякую неалгебраическую линию называют трансцендентной.
В примере 3.1,а,б,в,г,е — линии алгебраические: а — первого порядка, б,в,г,е — второго порядка. Примером трансцендентной линии служит синусоида, т.е. график функции . Эту линию нельзя задать уравнением вида (3.4).
Видео:Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать

Теорема (3.1) об инвариантности порядка алгебраической линии
Если в некоторой аффинной системе координат на плоскости линия задана уравнением (3.4), то и в любой другой аффинной системе координат эта линия задается уравнением того же вида (3.4) и той оке степени.
Действительно, пусть в аффинной системе координат уравнение имеет вид (3.4):
Получим уравнение этой линии в другой (новой) аффинной системе координат . Старые координаты точки связаны с новыми ее координатами выражениями (2.8):
где — координаты вектора переноса начала координат , а — элементы матрицы перехода базиса к новому . Подставим эти выражения в одночлен :
Раскрывая скобки, получаем многочлен двух переменных , степень которого не больше, чем . Аналогичные многочлены получим из других одночленов, входящих в левую часть (3.4). Сложив эти многочлены, получим многочлен , степень которого не превосходит степени исходного многочлена . Таким образом, при замене системы координат порядок алгебраической линии не увеличивается. Но он не может и уменьшиться, так как если порядок уменьшится при переходе к новой системе координат, то он должен увеличиться при обратном переходе к старой системе координат. Следовательно, порядок алгебраической линии остается неизменным в любой аффинной системе координат (говорят, что порядок алгебраической линии является инвариантом). Теорема доказана.
В аналитической геометрии на плоскости изучаются:
– алгебраические линии первого порядка, описываемые алгебраическим уравнением первой степени с двумя неизвестными:
– алгебраические линии второго порядка, описываемые алгебраическим уравнением второй степени с двумя неизвестными:
1. Теорема 3.1 фактически выражает свойство многочленов: при линейной невырожденной замене переменных
где , степень многочлена не изменяется.
Действительно, преобразование уравнения при переходе от одной системы координат к другой соответствует линейной невырожденной замене переменных многочлена в левой части уравнения.
2. Алгебраическое уравнение (3.4) может не иметь действительных решений. Например, на плоскости нет точек, координаты которых удовлетворяют уравнению . Однако в области комплексных чисел, согласно основной теоремы алгебры, любое алгебраическое уравнение имеет решения. Поэтому каждое алгебраическое уравнение (3.4) , где и , задает некоторую алгебраическую линию на двумерной комплексной плоскости (см. пункт 2 замечаний 2.9). Если все точки этой линии вещественные (действительные), т.е. , а , то линию называют вещественной (действительной). В противном случае линию называют мнимой.
3. Алгебраическими неравенствами с двумя неизвестными называются неравенства вида
где — многочлен двух переменных и . Степенью алгебраического неравенства называется степень многочлена .
4. Многочлены первой степени и алгебраические уравнения (неравенства) первой степени называются линейными.
5. Многочлен второй степени
называется также квадратичной функцией двух переменных; многочлен называется квадратичной формой (квадратичной частью функции), многочлен — линейной формой (линейной частью функции), коэффициент — свободным членом. По сравнению со стандартной записью многочлена некоторые коэффициенты квадратичной функции удвоены для удобства выполнения алгебраических преобразований.
6. Квадратичную функцию можно записать:
где — матрица квадратичной функции; расширенный (дополненный единицей)
столбец переменных;
б) выделяя квадратичную и линейную части:
7. Многочлены второй степени и алгебраические уравнения (неравенства) второй степени называются квадратичными (квадратными).
8. Линии, задаваемые системой алгебраических уравнений и неравенств, называются полуалгебраическими. Например, уравнение задает на координатной плоскости полуалгебраическую линию:
9. Теорема 3.1, разумеется, справедлива для прямоугольных систем координат на плоскости. Напомним, что преобразования прямоугольных систем координат являются ортогональными (см. пункт замечаний 2.3). Поэтому соответствующие этим преобразованиям линейные замены переменных (см. пункт 1) с ортогональной матрицей называются ортогональными (неоднородными при или однородными при ). Далее, как правило, будут рассматриваться уравнения, записанные в прямоугольной системе координат .
Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Прямая линия на плоскости и в пространстве с примерами решения
Содержание:
Общее уравнение прямой:
Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.
Определение: Любое соотношение
Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.
Пример:
а) 2х + Зу-5 = 0 — линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) — ему не удовлетворяет;
б)
в) 
Рассмотрим другое определение линии:
Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 — уравнением линии.
Определение: Общим уравнением прямой называется уравнение первого порядка вида
Рассмотрим частные случаи этого уравнения:
а) С = 0; 
Рис. 20. Прямая, проходящая через начало координат.
б) 5 = 0; Ах+С=0 — прямая проходит параллельно оси ординат Оу (Рис. 21):
Рис. 21. Прямая, проходящая параллельно оси ординат Оу.
в) А = 0; Ву+С=0 — прямая проходит параллельно оси абсцисс Ох (Рис. 22):
Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

Виды уравнений прямой
1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой 








Рис. 23. Отрезки, отсекаемые прямой на координатных осях.
Из рисунка видно, что 
2. Уравнение прямой в отрезках.
Пусть в общем уравнении прямой параметр 
Обозначим через 

Рис. 24. Отрезки, отсекаемые прямой на координатных осях.
При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки:
3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки 


Пусть 




4. Уравнение прямой, проходящей через заданную точку 


Определение: Вектор 



Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.
В силу того, что вектора 
Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.
5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой
Основные задачи о прямой на плоскости
1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями 
2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами
Требуется найти угол между этими прямыми (Рис. 26):
Рис. 26. Угол между двумя прямыми.
Из рисунка видно, что 
Наименьший угол между пересекающимися прямыми определим формулой 
- а) если прямые
параллельны или совпадают
то
Отсюда следует условие параллельности прямых: угловые коэффициенты прямых равны между собой
- б) если прямые
перпендикулярны
то
не существует.
Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением
Пример:
Определить угол между прямыми
Решение:
В силу того, что 
Пример:
Выяснить взаимное расположение прямых
Решение:
Так как угловые коэффициенты 

3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки 


Если прямая 
Видео:9 класс, 5 урок, Уравнение линии на плоскостиСкачать

Прямая линия на плоскости и в пространстве. Системы координат на плоскости
Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка 
Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая — второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси — координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую — осью ординат, обозначаемую Оу.
Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно 
Координатами точки М в заданной системе называются числа 


Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у — М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.
На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3).
Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:
- первая координатная четверть: х>0, у>0;
- вторая координатная четверть: х
0, у>0;
- третья координатная четверть: х
0, у
0;
- четвертая координатная четверть: х>0, у
0.
Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.
Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.
Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3).
Каждая точка М в полярной системе координат задается парой координат 
Декартова прямоугольная система координат связана с полярной системой формулами:
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точками






Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки 




Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как 


Если обозначить через 

выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:
позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u — произвольная ось, а 


Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая — второй. Обозначим их в заданном порядке через 

Определение 7.1.1. Число 




Число 





Задача о делении отрезка в данном отношении формулируется следующим образом:
Считая известными координаты двух точек 




Решение задачи определяется следующей теоремой.
Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок 

Доказательство:
Спроектируем точки 

Подставив в (7.1.4) величины отрезков 

Разрешая это уравнение относительно х, находим:
Вторая формула (7.1.3) получается аналогично.
Если 
середина отрезка 

получаются из (7.1.3) при 
Основная теорема о прямой линии на плоскости
Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.
Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора 

Для всех направляющих векторов 

Действительно, если 


Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.
Справедлива следующая теорема.
Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.
Доказательство: Пусть В = (О,b>- точка пересечения прямой L с осью у, а Р = (х,у) — любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р — прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.
Так как треугольники BSQ и BRP подобны, то 
Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.
Таким образом, уравнение любой прямой можно записать в виде:


В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).
Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:
Если 
т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению
или 
Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую.
Уравнение (7.2.4) называется общим уравнением прямой. Так
как 


1. 

2. 

3. 
4. А=0; С=0; Ву-0 или у = 0 — это уравнение оси абсцисс Ох.
5. В=0;С=0; Ах=0 или х = 0 — это уравнение оси ординат Оу.
Различные виды уравнений прямой на плоскости
Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.
Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:
где 
Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки 

Геометрическое место концов всевозможных векторов вида 


где 
Система (7.3.3) равносильна уравнению
называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение

Если абсциссы точек 


Если ординаты точек 


угловой коэффициент прямой.
Уравнение (7.3.6) называется уравнением прямой, проходящей через точку 
Пример:
Составить уравнение прямой, проходящей через две точки
Решение:
I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек 
II способ. Зная координаты точек 
Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: 
Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения

Взаимное расположение двух прямых на плоскости
Пусть на плоскости заданы две прямые общими уравнениями 

Если прямые параллельны

И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:
Теорема 7.4.1. Две прямые 
Например, прямые 
т. к.
Если прямые перпендикулярны 


Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.
Теорема 7.4.2. Две прямые 

Например, прямые 

Если прямые заданы уравнениями вида 

Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство

а для их перпендикулярности необходимо и достаточно, чтобы

Пример:
Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).
Решение:
Проекция точки Р на прямую АВ — это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.
Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:
Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку 




Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра
найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.
Пример:
Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .
Решение:
Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:
Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:

Пример:
Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.
Решение:
Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: 

Прямая линия в пространстве
Системы координат в пространстве
В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).
Пусть задано пространство
Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки 

Вектор 
Итак, пусть прямая L проходит через точку 

Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор 



Уравнение 


Полученные уравнения называются параметрическими уравнениями прямой.
При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.
Разрешив уравнения (7.5.2) относительно t
и приравняв найденные значенияt получим канонические уравнения прямой:
Если прямая L в пространстве задается двумя своими точками 
можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения
где 
Пример:
Составить параметрические уравнения прямой, проходящей через точку
Решение:
В качестве направляющего вектора 



Пример:
Записать уравнения прямой 
Обозначим



Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор
прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид
Исключая из уравнений параметр t, получим уравнения прямой в виде
Однако и в этом случае формально можно записывать канонические уравнения прямой в виде 
Аналогично, канонические уравнения

Пример:
Составить канонические и параметрические уравнения прямой, проходящей через точку 
Решение:
Подставив координаты точки 

.
Пример:
Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно
а) прямой 
Решение:
а) Поскольку направляющий вектор заданной прямой

подставив координаты точки М(2; -1; 4) и вектора 
б) Поскольку единичный вектор оси О х: 
(7.5.3) координаты точки М(2; -1; 4 ) и вектора 
в) В качестве направляющего вектора 



г) Единичный вектор оси Oz : 
Пример:
Составить уравнение прямой, проходящей через две заданные точки
Решение:
Подставив координаты точек 
(7.5.4), получим:
Взаимное расположение двух прямых в пространстве
Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:
Очевидно, что за угол 


Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов
Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:
т.е. 



Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю:
Пример:
Найти угол между прямыми 
Решение:
Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов 




Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

Вычисление уравнения прямой
Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол 
Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.
1) Пусть сначала 
Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:
из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь
Нетрудно проверить, что формула (3) остается справедливой также и при х
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
📹 Видео
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Поле направлений дифференциального уравнения первого порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Видеоурок "Общее уравнение кривой 2 порядка"Скачать

Видеоурок "Приведение к каноническому виду"Скачать

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1Скачать

Кривые второго порядкаСкачать

11. Прямая в пространстве и ее уравненияСкачать
































параллельны или совпадают
то
Отсюда следует условие параллельности прямых: угловые коэффициенты прямых равны между собой 
перпендикулярны
то
не существует.







0, у>0;
0, у
0;
0.































































