Линейные уравнения со степенями 7 класс

Степенные или показательные уравнения.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n

3. a n • a m = a n + m

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .

Получим 9 х+8 =(3 2 ) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10•4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .

4 х = (2 2 ) х = 2 2х

И еще используем одну формулу a n • a m = a n + m :

2 2х+4 = 2 2х •2 4

Добавляем в уравнение:

2 2х •2 4 — 10•2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2 :

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2 ) х = 3 2х

Получаем уравнение:
3 2х — 12•3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х ) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3

Возвращаемся к переменной x.

3 х = 9
3 х = 3 2
х1 = 2

Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Содержание
  1. Тема урока: «Решение уравнений, содержащих степени с натуральным показателем»
  2. Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули
  3. Как решать уравнения алгебра 7 класс
  4. Как решать систему уравнений алгебра 7 класс
  5. метод подстановки
  6. метод сложения
  7. графический метод
  8. Как решать дроби 7 класс
  9. Примеры 7 класс как решать
  10. Как решать задачи алгебра 7 класс
  11. Как решать функции алгебра 7 клас с
  12. Как решать степени алгебра 7 класс
  13. Алгебра модули как решать
  14. Об Авторе
  15. Смотрите также
  16. Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток
  17. Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы
  18. Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
  19. 2 комментария
  20. 📽️ Видео

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Тема урока: «Решение уравнений, содержащих степени с натуральным показателем»

Разделы: Математика

В седьмом классе при изучении темы «Степень и ее свойства» можно один из уроков посвятить изучению показательных уравнений. Задания в учебнике, несмотря на их разнообразие, направлены в основном на механическую отработку свойств степени и о практическом применении нет речи. Познавательная активность в этом возрасте достаточно высока, и поэтому тема вводится легко. Разумеется, мы не будем называть уравнения показательными, а назовем урок «Решение уравнений, содержащих степени с натуральным показателем».

Ход урока

I. Ребята, сегодня вы сами определите тему урока, а для этого выполним следующее задание:

На доске записаны следующие степени:

Линейные уравнения со степенями 7 класс

Ребята, ответьте на вопрос: Какие свойства степени здесь перечислены?

Ученики называют свойства, которые параллельно оформляются на доске.

На доске появляется следующая таблица:

Линейные уравнения со степенями 7 класс

А теперь внимательно посмотрите на первую и вторую строку каждого столбца и назовите сходства и различия этих выражений.

Общее: в каждом из столбцов записано одно и то же свойство степени.

Различия: в первых строках переменная находится в показатели степени, во-вторых — в основании.

Вывод: при записи степени неизвестное может находиться как в показателе степени, так и в основании.

Ребята, ответьте на вопрос: что произойдет, если степень, содержащую переменную, прировнять к числу?

Получим равенство, содержащее переменную.

А как называют равенство, содержащее переменную?

Рассмотрим следующие уравнения:

Какое условие необходимо, чтобы равенство стало верным?

Чтобы показатели степени были равны.

Следовательно, х = 2.

Когда такое равенство будет верным?

Когда основания степени равны.

Следовательно, х = 7.

На основании данных примеров, мы можем сделать вывод, что степени а m = b n , при условии, что основания этих степеней равны, т.е. a = b и показатели их тоже равны, т.е. m = n.

Ребята, открывайте тетради, записывайте число и оставьте строчку для записи темы.

Продолжаем работать с таблицей.

Линейные уравнения со степенями 7 класс

Используя свойства степени, решим каждое уравнение.

Решение уравнений происходит в форме соревнования: первый, правильно решивший уравнение, записывает его решение на доске.

Итак, ребята, чем мы занимались на этом уроке?

Решали уравнения, содержащие степень.

А теперь, давайте попробуем сформулировать тему сегодняшнего урока.

Запишем ее в тетрадь.

Решим следующие уравнения (с последующей проверкой на доске):

1. Линейные уравнения со степенями 7 класс2. Линейные уравнения со степенями 7 класс

Ответ х=3; Ответ х=36.

Уравнения для самостоятельной работы учащихся:

Подводится итог урока.

Домашнее задание дается в следующей форме: ребята получают работу с готовым решением и оценкой, они должны самостоятельно найти ошибку и исправить ее. Примеры заданий:

Линейные уравнения со степенями 7 класс

а)81к 4 =3 8
3 4 ·к 4 =3 4
(3к) 4 =(3 4 ) 4
3к=3 4
к=3 4 :3
к=3
Ответ: 3

а)120·5 n -100·5 n =500
5 n ·(120-100)=500
5 n ·20=500
5 n =500:20
5 n =125
5 n =5 3
n=3
Ответ: 3

б)х 3 ·х 2 =32
х 3 ·х 2 =2 5
х 5 =2 5
х=5
Ответ: 5Линейные уравнения со степенями 7 классЛинейные уравнения со степенями 7 класс

Линейные уравнения со степенями 7 класс

оценка 3

в) 2 n+7 :2 n+3 =(2 n+1 ) 2
2 n+7 :2 n+3 =2 2n+2
2 10 =2 2n+2
2 n+2 =10
2 n =8
n=4
Ответ: 4

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

Видео:КАК РЕШАТЬ УРАВНЕНИЯ СО СТЕПЕНЯМИ? Примеры | АЛГЕБРА 7 классСкачать

КАК РЕШАТЬ УРАВНЕНИЯ СО СТЕПЕНЯМИ? Примеры | АЛГЕБРА 7 класс

Как решать уравнения алгебра 7 класс

Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

Линейные уравнения со степенями 7 класс

Рассмотрим несколько примеров пошагового решения линейных уравнений.

Пример 1.
6x + 24 = 0

Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

Линейные уравнения со степенями 7 класс

Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

Линейные уравнения со степенями 7 класс

Пример 2.
9 + 16x = 41 + 14x

Линейные уравнения со степенями 7 класс

Это уравнение более сложное. Здесь важно запомнить несколько моментов:

  • числа без х переносятся в левую часть, а с х — в правую;
  • при переносе знаки меняют.

Пример 3.
7(10 — 4x) + 5x = 12 — 3(5x + 2)

Линейные уравнения со степенями 7 класс

  1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
  2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
  3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
  4. Подсчитываем результат с обеих сторон.
  5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

В рассмотренных уравнениях корень точно определён. Так получается не всегда.

Пример 4.

Линейные уравнения со степенями 7 класс

Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

Линейные уравнения со степенями 7 класс

В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

Как решать систему уравнений алгебра 7 класс

Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

метод подстановки

Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

Линейные уравнения со степенями 7 класс

Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

Линейные уравнения со степенями 7 класс

Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

Линейные уравнения со степенями 7 класс

Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

метод сложения

Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

Линейные уравнения со степенями 7 класс

графический метод

У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

  1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
  2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
  3. Отмечаем на графике соответствующие прямые, подписываем их название.
  4. на месте пересечения получившихся прямых ставим точку — это будет решение.
  5. Точка имеет координаты (1; 5).

Линейные уравнения со степенями 7 класс

На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Как решать дроби 7 класс

Дроби можно разделить на 2 основных вида:

Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

Линейные уравнения со степенями 7 класс

Для начала рассмотрим решение примеров с десятичными дробями.

Линейные уравнения со степенями 7 класс

Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

Линейные уравнения со степенями 7 классПримеры решения обыкновенных дробей.

Линейные уравнения со степенями 7 класс

  • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
  • при умножении пишем дроби под одной чертой, сокращаем.
  • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

7 класс, 4 урок, Линейное уравнение с одной переменной

Примеры 7 класс как решать

Теперь закрепим решение дробей на примерах.

Решение примера, представленного ниже:

  1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
  2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
  3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

Линейные уравнения со степенями 7 класс

Чтобы верно решить следующий пример, нужно:

  • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
  • Умножить десятичные дроби столбиком, не забыть поставить запятую;
  • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
  • сложили числа.

Линейные уравнения со степенями 7 класс

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как решать задачи алгебра 7 класс

Задачи решаются путем составления уравнений.

Линейные уравнения со степенями 7 класс

Другие примеры задач с подробными решениями в видео-материалах.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Как решать функции алгебра 7 клас с

Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

  • y(x) = 8x
  • y(x) = −3x — 62
  • y(x) = x−1 + 18

Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

Линейные уравнения со степенями 7 класс

Линейные уравнения со степенями 7 класс

Видео:Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение

Как решать степени алгебра 7 класс

Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Линейные уравнения со степенями 7 класс

Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

Линейные уравнения со степенями 7 класс

Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

Линейные уравнения со степенями 7 класс

При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

Рассмотрим несколько примеров со степенями.

Линейные уравнения со степенями 7 класс

Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Алгебра модули как решать

Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

Линейные уравнения со степенями 7 класс

Перейдем к простым примерам.

Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

Линейные уравнения со степенями 7 класс

Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

Другие примеры описаны в видео.

Об Авторе

Линейные уравнения со степенями 7 класс

Смотрите также

  • Линейные уравнения со степенями 7 класс

Видео:№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ

Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток

Линейные уравнения со степенями 7 класс

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы

Линейные уравнения со степенями 7 класс

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

2 комментария

Линейные уравнения со степенями 7 класс

Спасибо большое очень помогли.

Линейные уравнения со степенями 7 класс

Огромное спасибо!А то учитель неможет нормально тему объяснить

📽️ Видео

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

Как решать линейные уравнения #математика #математика7классСкачать

Как решать линейные уравнения   #математика #математика7класс

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Алгебра 7. Урок 1 - Свойства степенейСкачать

Алгебра 7. Урок 1 - Свойства степеней

Урок 78. Линейные уравнения с одной переменной (7 класс)Скачать

Урок 78.  Линейные уравнения с одной переменной (7 класс)
Поделиться или сохранить к себе: