Линейные уравнения с двумя переменными примеры задач

Содержание
  1. Решение задач с использованием систем линейных уравнений с двумя переменными.
  2. Просмотр содержимого документа «Решение задач с использованием систем линейных уравнений с двумя переменными.»
  3. Системы линейных уравнений
  4. Линейные уравнения с двумя переменными
  5. Система двух линейных уравнений с двумя переменными
  6. Метод подстановки
  7. Метод сложения
  8. Система линейных уравнений с тремя переменными
  9. Задачи на составление систем линейных уравнений
  10. Уравнения с двумя переменными (неопределенные уравнения)
  11. Урок 1.
  12. Ход урока.
  13. 1) Орг. момент.
  14. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  15. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  16. 🔥 Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    Решение задач с использованием систем линейных уравнений с двумя переменными.

    Линейные уравнения с двумя переменными примеры задач

    Данная разработка предназначена для учеников 7 класса, а также для тех, кто желает отработать навык решения задач. Теоретическая часть содержит примеры решения задач с использованием систем уравнений. В практической части представлено большое количество задач с тематическим разделением.

    Просмотр содержимого документа
    «Решение задач с использованием систем линейных уравнений с двумя переменными.»

    Решение задач с использованием систем линейных уравнений с двумя переменными.

    Переходим теперь к практическому применению систем линейных уравнений с двумя переменными. Часто бывает, что в задачах неизвестны два, а то и три-четыре компонента. И в этом случае обозначение какого-то одного компонента переменной не облегчает решение задачи. Тогда нужно ввести две или три переменные. Вот здесь нам как раз и понадобится система уравнений и способы её решения. Приведём пример с полным описанием.

    Например, решить задачу. Лодка за 3 ч движения по течению и 4 ч против течения проходит 114 км. Найдите скорость лодки по течению и её скорость против течения, если за 6 ч движения против течения она проходит такой же путь, как за 5 ч по течению.

    Решение. В задаче описывается движение по воде. А значит, должна быть собственная скорость лодки и скорость течения реки. Они нам и не известны, поэтому обозначим через Линейные уравнения с двумя переменными примеры задач км/ч собственную скорость лодки, а через Линейные уравнения с двумя переменными примеры задачкм/ч – скорость течения реки. Тогда скорость лодки по течению реки равна Линейные уравнения с двумя переменными примеры задачкм/ч, а скорость лодки против течения реки — Линейные уравнения с двумя переменными примеры задачкм/ч. За 3 ч движения по течению реки лодка пройдёт Линейные уравнения с двумя переменными примеры задачкм, а за 5 ч — Линейные уравнения с двумя переменными примеры задачкм. За 4 ч против течения лодка пройдёт Линейные уравнения с двумя переменными примеры задачкм, а за 6 ч — Линейные уравнения с двумя переменными примеры задачкм. По условию задачи известно, что за 3 ч по течению и 4 ч против течения лодка пройдёт всего 114 км, значит, составляем первое уравнение: Линейные уравнения с двумя переменными примеры задачТакже по условию задачи известно, что за 6 ч движения против течения лодка проходит такой же путь, что и за 5 ч по течению, поэтому составляем второе уравнение: Линейные уравнения с двумя переменными примеры задач

    Для наглядности составим условие задачи в виде таблицы.

    Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Системы линейных уравнений

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Линейные уравнения с двумя переменными

    У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

    Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

    25x — стоимость x пирожных
    10y — стоимость y чашек кофе

    Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

    Сколько корней имеет данное уравнение?

    Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

    Линейные уравнения с двумя переменными примеры задач

    Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

    6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

    Линейные уравнения с двумя переменными примеры задач

    В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

    Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

    Линейные уравнения с двумя переменными примеры задач

    Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

    Линейные уравнения с двумя переменными примеры задач

    Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

    Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

    Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

    Линейные уравнения с двумя переменными примеры задач

    Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

    Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

    Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

    Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

    Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

    Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

    На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

    Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

    Линейные уравнения с двумя переменными примеры задач

    Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

    Линейные уравнения с двумя переменными примеры задач

    Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = 27,5

    Линейные уравнения с двумя переменными примеры задач

    Видео:Линейное уравнение с двумя переменными. 6 класс.Скачать

    Линейное уравнение с двумя переменными. 6 класс.

    Система двух линейных уравнений с двумя переменными

    Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

    Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

    Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

    Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

    Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

    Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

    Поставим текст задачи следующим образом:

    «Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

    Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

    Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

    Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

    Линейные уравнения с двумя переменными примеры задач

    Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

    Линейные уравнения с двумя переменными примеры задач

    Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

    Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

    Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

    Метод подстановки

    Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

    В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

    Линейные уравнения с двумя переменными примеры задач

    После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

    Линейные уравнения с двумя переменными примеры задач

    Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

    Линейные уравнения с двумя переменными примеры задач

    Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

    Линейные уравнения с двумя переменными примеры задач

    Пример 2. Решить методом подстановки следующую систему уравнений:

    Линейные уравнения с двумя переменными примеры задач

    Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

    Линейные уравнения с двумя переменными примеры задач

    Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

    Линейные уравнения с двумя переменными примеры задач

    Значит решением системы Линейные уравнения с двумя переменными примеры задачявляется пара значение (5; 3)

    Пример 3. Решить методом подстановки следующую систему уравнений:

    Линейные уравнения с двумя переменными примеры задач

    Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

    Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

    Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

    После выражения переменной x , наша система примет следующий вид:

    Линейные уравнения с двумя переменными примеры задач

    Теперь подставим первое уравнение во второе и найдем значение y

    Линейные уравнения с двумя переменными примеры задач

    Подставим y в первое уравнение и найдём x

    Линейные уравнения с двумя переменными примеры задач

    Значит решением системы Линейные уравнения с двумя переменными примеры задачявляется пара значений (3; 4)

    Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

    Линейные уравнения с двумя переменными примеры задач

    Видим, что в данном примере выражать x намного удобнее, чем выражать y .

    Пример 4. Решить методом подстановки следующую систему уравнений:

    Линейные уравнения с двумя переменными примеры задач

    Выразим в первом уравнении x . Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Подставим первое уравнение во второе и найдём y

    Линейные уравнения с двумя переменными примеры задач

    Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением Линейные уравнения с двумя переменными примеры задач, в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

    Линейные уравнения с двумя переменными примеры задач

    Значит решением системы Линейные уравнения с двумя переменными примеры задачявляется пара значений (5; −3)

    Видео:Линейное уравнение с двумя переменными. Практическая часть. 6 класс.Скачать

    Линейное уравнение с двумя переменными. Практическая часть. 6 класс.

    Метод сложения

    Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

    Решим следующую систему уравнений:

    Линейные уравнения с двумя переменными примеры задач

    Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

    Линейные уравнения с двумя переменными примеры задач

    Приведем подобные слагаемые:

    Линейные уравнения с двумя переменными примеры задач

    В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

    Значит решением системы Линейные уравнения с двумя переменными примеры задачявляется пара значений (9; 6)

    Пример 2. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

    Линейные уравнения с двумя переменными примеры задач

    В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

    Значит решением системы Линейные уравнения с двумя переменными примеры задачявляется пара значений (4;3)

    Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

    Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

    Например, систему Линейные уравнения с двумя переменными примеры задачможно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

    А систему уравнений Линейные уравнения с двумя переменными примеры задачметодом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

    Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

    Вернемся к самой первой системе Линейные уравнения с двумя переменными примеры задач, которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

    Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

    Линейные уравнения с двумя переменными примеры задач

    В результате получили систему Линейные уравнения с двумя переменными примеры задач
    Решением этой системы по-прежнему является пара значений (6; 5)

    Линейные уравнения с двумя переменными примеры задач

    Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

    Вернемся к системе Линейные уравнения с двумя переменными примеры задач, которую мы не смогли решить методом сложения.

    Умножим первое уравнение на 6, а второе на −2

    Линейные уравнения с двумя переменными примеры задач

    Тогда получим следующую систему:

    Линейные уравнения с двумя переменными примеры задач

    Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

    Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

    Линейные уравнения с двумя переменными примеры задач

    Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

    Пример 4. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Умножим второе уравнение на −1. Тогда система примет следующий вид:

    Линейные уравнения с двумя переменными примеры задач

    Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

    Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

    Пример 5. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Умножим второе уравнение на 3. Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

    Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

    Пример 6. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

    Линейные уравнения с двумя переменными примеры задач

    В получившейся системе Линейные уравнения с двумя переменными примеры задачпервое уравнение можно умножить на −5, а второе на 8

    Линейные уравнения с двумя переменными примеры задач

    Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

    Линейные уравнения с двумя переменными примеры задач

    Пример 7. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как Линейные уравнения с двумя переменными примеры задач, а правую часть второго уравнения как Линейные уравнения с двумя переменными примеры задач, то система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Первое уравнение умножим на −3, а во втором раскроем скобки:

    Линейные уравнения с двумя переменными примеры задач

    Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

    Линейные уравнения с двумя переменными примеры задач

    Получается, что система Линейные уравнения с двумя переменными примеры задачимеет бесчисленное множество решений.

    Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

    Линейные уравнения с двумя переменными примеры задач

    В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

    Линейные уравнения с двумя переменными примеры задач

    Получившаяся пара значений (2; −2) будет удовлетворять системе:

    Линейные уравнения с двумя переменными примеры задач

    Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

    Линейные уравнения с двумя переменными примеры задач

    На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

    Линейные уравнения с двумя переменными примеры задач

    Пример 8. Решить следующую систему уравнений методом сложения:

    Линейные уравнения с двумя переменными примеры задач

    Умножим первое уравнение на 6, а второе на 12

    Линейные уравнения с двумя переменными примеры задач

    Перепишем то, что осталось:

    Линейные уравнения с двумя переменными примеры задач

    Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

    Линейные уравнения с двумя переменными примеры задач

    Первое уравнение умножим на −1. Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

    Линейные уравнения с двумя переменными примеры задач

    Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Система линейных уравнений с тремя переменными

    В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

    Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

    Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

    Пример 1. Решить следующую систему уравнений методом подстановки:

    Линейные уравнения с двумя переменными примеры задач

    Выразим в третьем уравнении x . Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

    Линейные уравнения с двумя переменными примеры задач

    Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

    Линейные уравнения с двумя переменными примеры задач

    Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

    Линейные уравнения с двумя переменными примеры задач

    Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

    Линейные уравнения с двумя переменными примеры задач

    Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

    Линейные уравнения с двумя переменными примеры задач

    Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

    Линейные уравнения с двумя переменными примеры задач

    Пример 2. Решить систему методом сложения

    Линейные уравнения с двумя переменными примеры задач

    Сложим первое уравнение со вторым, умноженным на −2.

    Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

    Линейные уравнения с двумя переменными примеры задач

    Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

    Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

    Линейные уравнения с двумя переменными примеры задач

    Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

    Линейные уравнения с двумя переменными примеры задач

    Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

    Линейные уравнения с двумя переменными примеры задач

    Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

    Линейные уравнения с двумя переменными примеры задач

    Видео:Линейное уравнение с двумя переменными. Практическая часть. 6 класс.Скачать

    Линейное уравнение с двумя переменными. Практическая часть. 6 класс.

    Задачи на составление систем линейных уравнений

    Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

    Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

    Решение

    Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

    Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

    Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

    Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

    Линейные уравнения с двумя переменными примеры задач

    Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

    Подставим второе уравнение в первое и найдём y

    Линейные уравнения с двумя переменными примеры задач

    Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

    Линейные уравнения с двумя переменными примеры задач

    Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

    А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

    Выполним проверку. Для начала убедимся, что система решена правильно:

    Линейные уравнения с двумя переменными примеры задач

    Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

    Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

    Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

    При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

    Так наша система Линейные уравнения с двумя переменными примеры задачсодержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

    Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

    Решение

    Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

    Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

    В результате получаем два уравнения, которые образуют систему

    Линейные уравнения с двумя переменными примеры задач

    Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Подставим первое уравнение во второе и найдём y

    Линейные уравнения с двумя переменными примеры задач

    Подставим y в уравнение x = 300 − y и узнаем чему равно x

    Линейные уравнения с двумя переменными примеры задач

    Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

    Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

    Линейные уравнения с двумя переменными примеры задач

    Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

    Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

    Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

    Решение

    Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

    Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

    Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

    Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

    Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится Линейные уравнения с двумя переменными примеры задачмеди от первого куска.

    Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится Линейные уравнения с двумя переменными примеры задачмеди от второго куска.

    Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится Линейные уравнения с двумя переменными примеры задачмеди от третьего куска.

    Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится Линейные уравнения с двумя переменными примеры задачмеди.

    Сложим Линейные уравнения с двумя переменными примеры задач, Линейные уравнения с двумя переменными примеры задач, Линейные уравнения с двумя переменными примеры задачи приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

    Линейные уравнения с двумя переменными примеры задач

    Попробуем решить данную систему.

    Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

    Линейные уравнения с двумя переменными примеры задач

    Теперь в главной системе вместо уравнения Линейные уравнения с двумя переменными примеры задачзапишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

    Линейные уравнения с двумя переменными примеры задач

    Подставим второе уравнение в первое:

    Линейные уравнения с двумя переменными примеры задач

    Умножим первое уравнение на −10 . Тогда система примет вид:

    Линейные уравнения с двумя переменными примеры задач

    Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

    Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

    Линейные уравнения с двумя переменными примеры задач

    Значит масса первого сплава составляет 1,92 кг .

    Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

    Линейные уравнения с двумя переменными примеры задач

    Значит масса третьего сплава составляет 9,12 кг.

    Видео:Алгебра 7 Линейное уравнение с двумя переменными и его графикСкачать

    Алгебра 7 Линейное уравнение с двумя переменными и его график

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Линейные уравнения с двумя переменными примеры задач(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Линейные уравнения с двумя переменными примеры задачZ kЛинейные уравнения с двумя переменными примеры задач0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Линейные уравнения с двумя переменными примеры задачгде (Линейные уравнения с двумя переменными примеры задач; Линейные уравнения с двумя переменными примеры задач) – какое-либо решение уравнения (1), t Линейные уравнения с двумя переменными примеры задачZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Линейные уравнения с двумя переменными примеры задачZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Линейные уравнения с двумя переменными примеры задач

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Линейные уравнения с двумя переменными примеры задачZ, а девочек у, y Линейные уравнения с двумя переменными примеры задачZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Линейные уравнения с двумя переменными примеры задачZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Линейные уравнения с двумя переменными примеры задачгде m Линейные уравнения с двумя переменными примеры задачZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Линейные уравнения с двумя переменными примеры задач, где n Линейные уравнения с двумя переменными примеры задачZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Линейные уравнения с двумя переменными примеры задач

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Линейные уравнения с двумя переменными примеры задач=> Линейные уравнения с двумя переменными примеры задач

    б) Линейные уравнения с двумя переменными примеры задач=> Линейные уравнения с двумя переменными примеры задач

    в) Линейные уравнения с двумя переменными примеры задач=> Линейные уравнения с двумя переменными примеры задач

    г) Линейные уравнения с двумя переменными примеры задач=> Линейные уравнения с двумя переменными примеры задач

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Линейные уравнения с двумя переменными примеры задач

    Линейные уравнения с двумя переменными примеры задачЛинейные уравнения с двумя переменными примеры задачЛинейные уравнения с двумя переменными примеры задач
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Линейные уравнения с двумя переменными примеры задачЛинейные уравнения с двумя переменными примеры задачЛинейные уравнения с двумя переменными примеры задач
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Линейные уравнения с двумя переменными примеры задач

    в) Линейные уравнения с двумя переменными примеры задач

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Линейные уравнения с двумя переменными примеры задачZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Линейные уравнения с двумя переменными примеры задачZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Линейные уравнения с двумя переменными примеры задачZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Линейные уравнения с двумя переменными примеры задачZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Линейные уравнения с двумя переменными примеры задачZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Линейные уравнения с двумя переменными примеры задачZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Линейные уравнения с двумя переменными примеры задачZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Линейные уравнения с двумя переменными примеры задачZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Линейные уравнения с двумя переменными примеры задач(1;2), (5;2), (-1;-1), (-5;-2)

    Линейные уравнения с двумя переменными примеры задач

    Число 3 можно разложить на множители:

    a) Линейные уравнения с двумя переменными примеры задачб) Линейные уравнения с двумя переменными примеры задачв) Линейные уравнения с двумя переменными примеры задачг) Линейные уравнения с двумя переменными примеры задач
    в) Линейные уравнения с двумя переменными примеры задач(11;12), (-11;-12), (-11;12), (11;-12)
    г) Линейные уравнения с двумя переменными примеры задач(24;23), (24;-23), (-24;-23), (-24;23)
    д) Линейные уравнения с двумя переменными примеры задач(48;0), (24;1), (24;-1)
    е) Линейные уравнения с двумя переменными примеры задачx = 3m; y = 2m, mЛинейные уравнения с двумя переменными примеры задачZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Линейные уравнения с двумя переменными примеры задачZ
    з) Линейные уравнения с двумя переменными примеры задачx = 2m; y = m; x = 2m; y = -m, m Линейные уравнения с двумя переменными примеры задачZ
    и)Линейные уравнения с двумя переменными примеры задачрешений нет

    4) Решить уравнения в целых числах

    Линейные уравнения с двумя переменными примеры задач(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Линейные уравнения с двумя переменными примеры задач(-4;-1), (-2;1), (2;-1), (4;1)
    Линейные уравнения с двумя переменными примеры задач(-11;-12), (-11;12), (11;-12), (11;12)
    Линейные уравнения с двумя переменными примеры задач(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Линейные уравнения с двумя переменными примеры задач(-1;0)
    б)Линейные уравнения с двумя переменными примеры задач(5;0)
    в) Линейные уравнения с двумя переменными примеры задач(2;-1)
    г) Линейные уравнения с двумя переменными примеры задач(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • 🔥 Видео

    Линейные уравнения с двумя переменными. Решение задач.Скачать

    Линейные уравнения с двумя переменными. Решение задач.

    Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

    Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

    Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

    Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

    Матричный метод решения систем уравненийСкачать

    Матричный метод решения систем уравнений

    Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

    Уравнение с двумя переменными и его график. Алгебра, 9 класс

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

    Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    Неравенства с двумя переменными. 9 класс.Скачать

    Неравенства с двумя переменными. 9 класс.

    Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    Линейное уравнение с двумя переменными.Скачать

    Линейное уравнение с двумя переменными.
    Поделиться или сохранить к себе: