О чем эта статья:
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядят так: ах + b = 0, где a и b — действительные числа. Вот, что поможет в решении:
если а ≠ 0 — уравнение имеет единственный корень: х = -b : а;
если а = 0 — уравнение корней не имеет;
если а и b равны нулю, то корнем уравнения является любое число.
Квадратное уравнение выглядит так: ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5.
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: -4x = 12
- Разделим обе части на -4, чтобы коэффициент при неизвестной стал равен единице.
-4x = 12 | : (-4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
ЮПеренести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3(х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Тренировочные упражнения по алгебре на тему: «Линейные уравнения» (7 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Линейные уравнения. Тренировочные упражнения для 7 классов.
Собранный материал содержит тренировочные упражнения, позволяющие научить учащихся 7 классов решать линейные уравнения и уравнения, сводящиеся к линейным. При решении линейных уравнений вида ах=в следует обратить внимание на то, что если а не равно 0, то уравнение ах=в называется уравнением первой степени с одной переменной и имеет один корень, а линейное уравнение может не иметь корней, иметь один корень или бесконечно много. Данные задания могут быть использованы учителем на любом этапе урока в зависимости от целей и задач. Количество времени, отведённое на работу с упражнениями, также зависит от того, на каком этапе они используются, а также от типа школы и контингента учащихся.
№ 1. Решите уравнение:
а) х + 12 = 67; г) 15 — у = 8; ж)14 – х= –11; к) 65+к=54;
б) z + 35 = 87; д) 83 – а = 43; з) у – 33= –8; л) –15+а=22;
в) y – 93 = 18: е) m + 23 = 92; и) х +17= 13; м) 97 –х=100.
№ 2. Найдите корень уравнения:
а) 5х = 60; г) 6у = -18; ж)13у=78; к) –12к= –1,44;
б) 9у = 72; д) -2х = 10; з)1,7с= –0,34; л) 14у= –10;
в) 10 z = 15; е) 11у = 0; и) –7,4х= –1,48; м) 31с=93.
№ 3. Решите уравнение:
а) 4х + х = 70; г) 8х – 7х + 8 =12;
б) 4 · 25 · х = 800; д) у · 5 ·20 = 500;
в) 13у + 15у – 24 = 60; е) 6 z + 5 z – 44 =0.
№ 4. Решите уравнение:
а) 55 : х + 9 =20; г) 48 : (9х – х) =2; ж) 3х+14=35; к) 3=4·(к+2);
б) 88 : х – 24 = 64; д) (у + 6) – 2 = 15; з) 5·(у-9)=-2; л) 5·(с+5)= -7;
в) р · 38 – 76 = 38; е) 2 (а – 5) = 24; и) 3( у–33)=3; м) 2( х – 7)=3.
№ 5. Найдите корень уравнения:
а) (х + 15) – 8 = 17; г) 32 – х = 32 + х; ж) 2х+9=13 –х; к)1,2с+1=1–с;
б) (у – 35) + 12 = 32; д) х – 35 – 64 = 16; з) 14–у=19 –11у; л)3х–8=х+6;
в) 55 – (х – 15) = 30; е) 28 – у +35 = 53; и) 0,5а+11=4–3а; м)х–4х=27.
№ 6. Найдите корень уравнения:
а) 35х = 175; г) 2· (х – 5) =36;
б) m : 35 = 18; д) (у + 25) : 8 =16;
в) ( n -12) · 8 = 56; е) 24 · ( z + 9) = 288.
№ 7. Решите уравнение:
а) 2–3(х+2) = 5–2х; г) 0,4х = 0,4-2(х+2);
б) 0,2 – 2(х+1) = 0,4х; д) 5(2+1,5х)-0,5х=24;
в) 3-5(х+1) = 6-4х; е) 3(0,5х-4)+8,5х=18.
№ 8. Решите уравнение:
а) 4х — 5,5 = 5х — 3(2х-1,5); г) 7·(-3+2х)=-6х-1; ж) 4·(2-3х)=-7х+10;
б) 4 – 5(3х + 2,5) = 3х + 9,5; д) 2·(7+9к)=-6к+2; з) -4·(-к+7)=к+17;
в) 0,4(6х – 7) = 0,5(3х + 7); е) 6·(5-3с)=-8с-7; и) -5·(3а+1)-11=-16.
Видео:Уравнения с дробями. Алгебра 7 класс.Скачать
Линейные уравнения 7 класс
Линейные уравнения, решение которых начинается в курсе алгебры (7 класс) — это уравнения вида
где a и b — числа, x — переменная.
Уравнения, сводящиеся к виду ax=b при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей на число, отличное от нуля (то есть при помощи равносильных преобразований), также часто называют линейными (правильнее называть их уравнениями, сводящимися к линейным).
Рассмотрим примеры уравнений, сводящихся к линейным, которые встречаются в начале курса алгебры 7 класса.
Раскрываем скобки. Если перед скобками стоит множитель, умножаем этот множитель на каждое слагаемое в скобках. Если перед скобками стоит знак «+», знаки не меняем. Если перед скобками стоит знак «-«, знаки меняем на противоположные:
Неизвестные слагаемые переносим в одну сторону, известные — в другую. При переносе знаки слагаемых меняем на противоположные:
Обе части уравнения делим на число, стоящее перед иксом:
Неизвестные слагаемые перенесём в левую часть, известные — в правую. Знак каждого слагаемого при переносе из одной части уравнения в другую меняем на противоположный:
(Обратите внимание: хотя сумма слагаемых с переменной равна нулю, результат записываем не как 0, а как 0x).
Какое бы число мы не подставили в это уравнение вместо x, получим верное равенство.
Ответ: x — любое число.
Можно сначала привести подобные слагаемые, чтобы упростить уравнение:
а уже потом перенести: неизвестные — в одну сторону, известные — в другую:
Это уравнение не имеет корней.
Ответ: нет корней.
Приводим подобные слагаемые:
Переносим неизвестные слагаемые в одну сторону, известные — в другую, изменив при этом их знаки:
Обе части уравнения делим на число, стоящее перед иксом:
В следующий раз рассмотрим сводящиеся к линейным уравнениям уравнения с дробями.
14 комментариев
А в третьем уравнении ошибку вы допустилтхи. Перенесли неправильно 60х. Ответ должен быть х=24/53.
Спасибо, Маша! Ошибка исправлена.
Мария,всмсле!Там нет ошибок.У меня тоже ответ -24/53.Так как иксы в одну чторону,а числа в другую.Точнее если посмотреть на обычное линейное уравнение, например: x-3=0.
x=0+3
x=3.Обратите внимание,что решая любое уравнение иксы в левой части,а числа в правой (x=3);опять же иксы в левой части,а числа в правой и следовательно мы рассуждаем так во всех уравнениях
я возможно ошибаюсь , но
в уравнении №1) 4(9 — 5x) + 7x = 11 — 2(8x + 1)
ответ будет не -9 , а 9.
т к
3х=-27
х= -27/-3
х=9 , потому что если и в делителе и в знаменателе имеются знаки минуса , оно (как в умножении)становится положительным .
Полли, мы обе части уравнения делим на число, стоящее перед иксом: 3х=-27; х=-27:3, то есть знаки делимого и делителя разные, поэтому ответ со знаком «-«.
Да админ прав, делаем проверку 3X(-9)=-27
Х=-9 Потаму что если в делитиле и в знаментаиле имеются как вы сказали знаки минуса оно как в умножении не меняется.
Нет
Т.к. — делёный на + будет —
Спасибо за понятное изложение темы. Перерыв десяток сайтов и только на вашем нашел ответ на вопрос » как решать линейные уравнения «. Вам + 5 в карму:)
mne tut vse ponjatno. u menja problema s sostavleniem uravnenij/kak zapisatj zada4u matemati4eskim jazikom/ kombinatorika!
🌟 Видео
7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать
№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Линейные уравненияСкачать
Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | ИнфоурокСкачать
КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 классСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать
Линейные уравнения с одной переменной . Алгебра . 7 класс .Скачать