Линейные уравнения 7 класс теория

Решение простых линейных уравнений

Линейные уравнения 7 класс теория

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Линейные уравнения 7 класс теория

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Линейные уравнения 7 класс теория

Видео:Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Линейные уравнения 7 класс теория

  1. Линейные уравнения 7 класс теория
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Линейные уравнения 7 класс

Линейные уравнения, решение которых начинается в курсе алгебры (7 класс) — это уравнения вида

Линейные уравнения 7 класс теория

где a и b — числа, x — переменная.

Уравнения, сводящиеся к виду ax=b при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей на число, отличное от нуля (то есть при помощи равносильных преобразований), также часто называют линейными (правильнее называть их уравнениями, сводящимися к линейным).

Рассмотрим примеры уравнений, сводящихся к линейным, которые встречаются в начале курса алгебры 7 класса.

Линейные уравнения 7 класс теория

Раскрываем скобки. Если перед скобками стоит множитель, умножаем этот множитель на каждое слагаемое в скобках. Если перед скобками стоит знак «+», знаки не меняем. Если перед скобками стоит знак «-«, знаки меняем на противоположные:

Линейные уравнения 7 класс теория

Неизвестные слагаемые переносим в одну сторону, известные — в другую. При переносе знаки слагаемых меняем на противоположные:

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Обе части уравнения делим на число, стоящее перед иксом:

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Неизвестные слагаемые перенесём в левую часть, известные — в правую. Знак каждого слагаемого при переносе из одной части уравнения в другую меняем на противоположный:

Линейные уравнения 7 класс теория

(Обратите внимание: хотя сумма слагаемых с переменной равна нулю, результат записываем не как 0, а как 0x).

Какое бы число мы не подставили в это уравнение вместо x, получим верное равенство.

Ответ: x — любое число.

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Можно сначала привести подобные слагаемые, чтобы упростить уравнение:

Линейные уравнения 7 класс теория

а уже потом перенести: неизвестные — в одну сторону, известные — в другую:

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Это уравнение не имеет корней.

Ответ: нет корней.

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Приводим подобные слагаемые:

Линейные уравнения 7 класс теория

Переносим неизвестные слагаемые в одну сторону, известные — в другую, изменив при этом их знаки:

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

Обе части уравнения делим на число, стоящее перед иксом:

Линейные уравнения 7 класс теория

Линейные уравнения 7 класс теория

В следующий раз рассмотрим сводящиеся к линейным уравнениям уравнения с дробями.

14 комментариев

А в третьем уравнении ошибку вы допустилтхи. Перенесли неправильно 60х. Ответ должен быть х=24/53.

Спасибо, Маша! Ошибка исправлена.

Мария,всмсле!Там нет ошибок.У меня тоже ответ -24/53.Так как иксы в одну чторону,а числа в другую.Точнее если посмотреть на обычное линейное уравнение, например: x-3=0.
x=0+3
x=3.Обратите внимание,что решая любое уравнение иксы в левой части,а числа в правой (x=3);опять же иксы в левой части,а числа в правой и следовательно мы рассуждаем так во всех уравнениях

я возможно ошибаюсь , но
в уравнении №1) 4(9 — 5x) + 7x = 11 — 2(8x + 1)
ответ будет не -9 , а 9.
т к
3х=-27
х= -27/-3
х=9 , потому что если и в делителе и в знаменателе имеются знаки минуса , оно (как в умножении)становится положительным .

Полли, мы обе части уравнения делим на число, стоящее перед иксом: 3х=-27; х=-27:3, то есть знаки делимого и делителя разные, поэтому ответ со знаком «-«.

Да админ прав, делаем проверку 3X(-9)=-27

Х=-9 Потаму что если в делитиле и в знаментаиле имеются как вы сказали знаки минуса оно как в умножении не меняется.

Нет
Т.к. — делёный на + будет —

Спасибо за понятное изложение темы. Перерыв десяток сайтов и только на вашем нашел ответ на вопрос » как решать линейные уравнения «. Вам + 5 в карму:)

mne tut vse ponjatno. u menja problema s sostavleniem uravnenij/kak zapisatj zada4u matemati4eskim jazikom/ kombinatorika!

Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

Линейное уравнение с одной переменной

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Содержание

Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

7 класс, 4 урок, Линейное уравнение с одной переменной

Что такое уравнение

Для изучения темы линейного уравнения вспомним, что уравнением называют равенство, в составе которого есть неизвестное число. Это неизвестное число-переменную нам и нужно найти.

К примеру, не будут уравнениями выражения $3n-4$ или $d + 8$. Ведь в них не требуется найти значение переменной и отсутствует знак равенства. Это просто буквенные выражения. А вот записи: $4y-7 = 13$ или $-5x = 6x-2$ являются уравнениями.

Чаще всего уравнения используют, чтобы решить задачу.

Приведем пример

Папе и сыну вместе $45$ лет, при этом известно, что отец старше на $19$ лет. Найдем, сколько лет каждому из них?

Обозначим возраст сына за $x$, тогда папе будет $x+19$ лет. Получим уравнение: $x + (x + 19) = 45$, так как по условию вместе им $45$ лет. Решим:

после раскрытия скобок: $2x + 19 = 45$,

То есть с помощью составления уравнения мы выяснили, что сыну $13$ лет. Отцу тогда $32$ года $(13 + 19)$. И вместе им действительно $45$ лет: $$13 + 32 = 45$$

Таким образом, записав по условию задачи уравнение, мы смоделировали алгебраическую модель ситуации.

Неизвестная переменная может обозначаться в уравнении не только буквами $x$ или $y$, но и любыми другими латинскими буквами.

Когда от нас требуется решить уравнение, мы должны найти все его корни либо показать, что их нет.

Корень уравнения – это значение неизвестной переменной, превращающее уравнение в верное равенство.

Рассмотрим пример

Выясним, является ли корнем этого уравнения $x = 4$. Подставим $4$ вместо $x$ и получим: $$-1 = 5$$$$12-1 = 5$$$$11 = 5$$

При решении мы поняли, что $x ≠ 4$, так как $11 ≠ 5$. То есть число $4$ не может быть корнем данного в задании уравнения. Посчитайте самостоятельно, какой корень у этого уравнения?

Корней может быть несколько, один или не быть совсем. В последнем случае говорят обычно, что уравнение не имеет решения или не имеет корней.

В примере с папой и сыном корень уравнения единственный: $x = 13$. Ведь нет других вариантов решения, при которых будут выполнены все условия и получится верное равенство. Проверьте сами?

Видео:Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Что такое линейное уравнение

Если числа в конечном уравнении $2x = 26$ к нашему первому примеру заменить на буквы $a$ и $b$, мы получим уравнение вида $ax = b$.

Подобные уравнения и называются линейными.

Уравнения вида $ax = b$, где $x$ — переменная, $a$ и $b$ — некоторые числа, называются линейными уравнениями с одной переменной

Когда уравнения содержат, к примеру, степень: $$x^2 + 3 = 7$$ или неизвестная переменная находится в знаменателе дроби: $$frac — 3 = 0$$ они не будут называться линейными.

Иногда в составе уравнения есть несколько переменных, это тоже не наш случай: такие уравнения будут изучаться позже.

Видео:Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение

Коэффициенты и решение линейных уравнений

Числа $a$ и $b$ в линейном уравнении называют коэффициентами. Они могут быть выражены любыми числами, в том числе отрицательными или дробными. При этом $a$ называют коэффициентом при неизвестной переменной, а коэффициент $b$ свободным.

В наших примерах у уравнений был единственный корень. Наверное, вы заметили, что в них коэффициенты $a$ и $b$ были равны числам, отличным от нуля. Подобные уравнения решаются по простому алгоритму: $$x = frac $$

Посмотрим, когда линейное уравнение никак не может иметь корней (или верного решения).

Попробуем взять коэффициент $a$, равный $0$, а коэффициент $b$ — любое число, не равное $0$. Тогда получим уравнение: $$0times x = b$$ При умножении $x$ на ноль всегда будет ноль, но у нас $b ≠ 0$. Следовательно, правая и левая части такого уравнения между собой не равны, и при $a = 0$, а $b ≠ 0$ линейное уравнение не имеет верного решения.

Но линейное уравнение может иметь и множество решений. Рассмотрим такой случай. Например, что будет, если оба коэффициента равны нулю: $a = 0$ и $b = 0$? $$0times x + 0 = 0$$ Ясно, что любое подобное уравнение с обоими коэффициентами, равными нулю, имеет бесконечно много корней. Почему? Потому что любое число при умножении на 0 дает ноль. Какое бы число вместо $x$ мы не подставили, равенство будет верным.

Таким образом, при решении линейных уравнений мы пришли к трем общим ситуациям:

Величины $a$ и $b$$a ≠ 0$, $b$ — любое$a = b = 0$$a = 0$, $b ≠ 0$
Корни уравнения $ax = b$$x = frac $$x$ — любоекорней нет

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 классСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 класс

Свойства линейных уравнений

Цель любого линейного уравнения – выразить $x$ и понять, чему он будет равен.

До того, как начать решать уравнение, над ним необходимо произвести все доступные арифметические действия, например, сложение/вычитание, раскрытие скобок, умножение/деление отдельно для свободных коэффициентов и отдельно для членов уравнения с неизвестной переменной.

Для упрощения дальнейшего решения с уравнениями можно произвести те же действия, что применяются к другим математическим выражениям.

Свойства линейных уравнений:

  1. Любой член можно перенести из одной части линейного уравнения в другую, но при этом нужно не забыть заменить знак на противоположный.

В процессе решения надо так преобразовать уравнение, чтобы все известные члены оказались с одной стороны равенства, а неизвестные — с другой.

Например: $5x = 30-3x$. Для решения перенесем $-3x$ в левую часть с противоположным знаком и получим $5x + 3x = 30$.

  1. В ходе решения обе части уравнения можно одновременно делить или умножать на какое-то одно и то же число, отличающееся от $0$. При этом равенство будет оставаться верным.

Часто второе свойство применяется в уравнениях с дробями. Например, нужно решить уравнение: $$frac times x = 8$$ Чтобы избавиться от дроби, попробуем и правую и левую части уравнения умножить на $2$. Тогда мы получим: $$2times frac times x = 2times 8$$ После умножения уравнение примет следующий вид: $$5x = 16$$

Согласитесь, такое уравнение решить намного легче. При этом после подобных преобразований равенство не нарушается, и мы получаем равносильные уравнения.

🔍 Видео

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурок

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Алгебра 7 Линейное уравнение с двумя переменными и его графикСкачать

Алгебра 7 Линейное уравнение с двумя переменными и его график

Линейные уравнения с одной переменной . Алгебра . 7 класс .Скачать

Линейные уравнения с одной переменной . Алгебра . 7 класс .

7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать

7 класс, 8 урок, Линейное уравнение с двумя переменными и его график

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | ИнфоурокСкачать

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | Инфоурок
Поделиться или сохранить к себе: