Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных

Содержание
  1. Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа
  2. Метод Лагранжа (вариация постоянных)
  3. Шаг 1. Решение однородного уравнения
  4. Шаг 2. Вариация постоянных – замена постоянных функциями
  5. Примеры
  6. Линейные неоднородные дифференциальные уравнения первого порядка
  7. Метод вариации произвольной постоянной для решения ЛНДУ первого порядка
  8. Подведем итог
  9. Еще один метод решения ЛНДУ первого порядка
  10. Метод вариации произвольной постоянной решения линейных неоднородных уравнений
  11. Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные. — презентация
  12. Похожие презентации
  13. Презентация на тему: » Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные.» — Транскрипт:
  14. 🔥 Видео

Видео:19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядка

Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа

Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Метод Лагранжа (вариация постоянных)

Рассмотрим линейное неоднородное дифференциальное уравнение с постоянными коэффициентами произвольного n-го порядка:
(1) .
Метод вариации постоянной, рассмотренный нами для уравнения первого порядка, также применим и для уравнений более высоких порядков.

Решение выполняется в два этапа. На первом этапе мы отбрасываем правую часть и решаем однородное уравнение. В результате получаем решение, содержащее n произвольных постоянных. На втором этапе мы варьируем постоянные. То есть мы считаем, что эти постоянные являются функциями от независимой переменной x и находим вид этих функций.

Хотя мы здесь рассматриваем уравнения с постоянными коэффициентами, но метод Лагранжа также применим и для решения любых линейных неоднородных уравнений. Для этого, однако, должна быть известна фундаментальная система решений однородного уравнения.

Шаг 1. Решение однородного уравнения

Как и в случае уравнений первого порядка, вначале мы ищем общее решение однородного уравнения, приравнивая правую неоднородную часть к нулю:
(2) .
Общее решение такого уравнения имеет вид:
(3) .
Здесь – произвольные постоянные; – n линейно независимых решений однородного уравнения (2), которые образуют фундаментальную систему решений этого уравнения.

Шаг 2. Вариация постоянных – замена постоянных функциями

На втором этапе мы займемся вариацией постоянных. Другими словами, мы заменим постоянные на функции от независимой переменной x :
.
То есть мы ищем решение исходного уравнения (1) в следующем виде:
(4) .

Если мы подставим (4) в (1), то получим одно дифференциальное уравнение для n функций . При этом мы можем связать эти функции дополнительными уравнениями. Тогда получится n уравнений, из которых можно определить n функций . Дополнительные уравнения можно составить различными способами. Но мы это сделаем так, чтобы решение имело наиболее простой вид. Для этого, при дифференцировании, нужно приравнивать к нулю члены, содержащие производные от функций . Продемонстрируем это.

Чтобы подставить предполагаемое решение (4) в исходное уравнение (1), нам нужно найти производные первых n порядков от функции, записанной в виде (4). Дифференцируем (4), применяя правила дифференцирования суммы и произведения:
.
Сгруппируем члены. Сначала выпишем члены с производными от , а затем – члены с производными от :

.
Наложим на функции первое условие:
(5.1) .
Тогда выражение для первой производной по будет иметь более простой вид:
(6.1) .

Тем же способом находим вторую производную:

.
Наложим на функции второе условие:
(5.2) .
Тогда
(6.2) .
И так далее. В дополнительных условиях, мы приравниваем члены, содержащие производные функций , к нулю.

Таким образом, если выбрать следующие дополнительные уравнения для функций :
(5.k) ,
то первые производных по будут иметь наиболее простой вид:
(6.k) .
Здесь .

Подставляем в исходное уравнение (1):
(1) ;

.
Учтем, что все функции удовлетворяют уравнению (2):
.
Тогда сумма членов, содержащих дают нуль. В итоге получаем:
(7) .

В результате мы получили систему линейных уравнений для производных :
(5.1) ;
(5.2) ;
(5.3) ;
. . . . . . .
(5.n-1) ;
(7′) .

Решая эту систему, находим выражения для производных как функции от x . Интегрируя, получим:
.
Здесь – уже не зависящие от x постоянные. Подставляя в (4), получаем общее решение исходного уравнения.

Заметим, что для определения величин производных мы нигде не использовали тот факт, что коэффициенты ai являются постоянными. Поэтому метод Лагранжа применим для решения любых линейных неоднородных уравнений, если известна фундаментальная система решений однородного уравнения (2).

Далее рассмотрены примеры решения уравнений методом Лагранжа.

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Примеры

Решить уравнения методом вариации постоянных (Лагранжа).

Решение примеров > > >

Автор: Олег Одинцов . Опубликовано: 05-08-2013 Изменено: 22-06-2017

Видео:Видеоурок "Метод вариации произвольных постоянных"Скачать

Видеоурок "Метод вариации произвольных постоянных"

Линейные неоднородные дифференциальные уравнения первого порядка

В данной теме поговорим о способах решения линейных неоднородных дифференциальных уравнений вида y ‘ = P ( x ) · y = Q ( x ) . Начнем с метода вариации произвольной постоянной и покажем способ применения этого метода для решения задачи Коши. Продолжим рассмотрением метода, который предполагает представление произвольной постоянной у как произведения двух функций u ( x ) и v ( x ) . В разделе мы приводим большое количество задач по теме с детальным разбором решения.

На тот случай, если применяемые при разборе темы термины и понятия окажутся незнакомыми для вас, мы рекомендуем заглядывать в раздел «Основные термины и определения теории дифференциальных уравнений».

Видео:9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.Скачать

9. Метод вариации произвольной постоянной ( метод Лагранжа ). Линейные дифференциальные уравнения.

Метод вариации произвольной постоянной для решения ЛНДУ первого порядка

Для краткости будет обозначать линейное неоднородное дифференциальное уравнение аббревиатурой ЛНДУ, а линейное однородное дифференциальное уравнение (ЛОДУ).

ЛНДУ вида y ‘ = P ( x ) · y = Q ( x ) соответствует ЛОДУ вида y ‘ = P ( x ) · y = 0 , при Q ( x ) = 0 . Если посмотреть на дифференциальное уравнение y ‘ = P ( x ) · y = 0 , становится понятно, что мы имеем дело с уравнением с разделяющимися переменными. Мы можем его проинтегрировать: y ‘ = P ( x ) · y = 0 ⇔ d y y = — P ( x ) d x , y ≠ 0 ∫ d y y = — ∫ P ( x ) d x ⇔ ln y + C 1 = — ∫ P ( x ) d x ⇔ ln y = ln C — ∫ P ( x ) d x , ln C = — C 1 , C ≠ 0 ⇔ e ln y = e ln C — ∫ P ( x ) d x ⇔ y = C · e — ∫ P ( x ) d x

Мы можем утверждать, что значение переменной y = 0 тоже является решением, так как при этом значении переменной уравнение y ‘ = P ( x ) · y = 0 обращается в тождество. Этому случаю соответствует решение y = C · e — ∫ P ( x ) d x при значении C = 0 .

Получается, что y = C · e — ∫ P ( x ) d x — общее решение ЛОДУ, где С – произвольная постоянная.

y = C · e — ∫ P ( x ) d x — это решение ЛОДУ y ‘ = P ( x ) · y = 0 .

Для того, чтобы найти общее решение неоднородного уравнения y ‘ = P ( x ) · y = Q ( x ) , будем считать С не константой, а функцией аргумента х . Фактически, мы примем y = C ( x ) · e — ∫ P ( x ) d x общим решением ЛНДУ.

Подставим y = C ( x ) · e — ∫ P ( x ) d x в дифференциальное уравнение y ‘ = P ( x ) · y = Q ( x ) . Оно при этом обращается в тождество:

y ‘ = P ( x ) · y = Q ( x ) C x · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x )

Теперь обратимся к правилу дифференцирования произведения. Получаем:

C ‘ ( x ) · e — ∫ P ( x ) d x + C ( x ) · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x )

Производная сложной функции e — ∫ P ( x ) d x ‘ равна e — ∫ P ( x ) d x · — ∫ P ( x ) d x ‘ .

Теперь вспомним свойства неопределенного интеграла. Получаем:

e — ∫ P ( x ) d x · — ∫ P ( x ) d x ‘ = — e — ∫ P ( x ) d x · P ( x )

Теперь выполним переход:

C ‘ ( x ) · e — ∫ P ( x ) d x + C ( x ) · e — ∫ P ( x ) d x ‘ + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x ) C ‘ ( x ) · e — ∫ P ( x ) d x — P ( x ) · C ( x ) · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x ) C ‘ ( x ) · e — ∫ P ( x ) d x = Q ( x )

Так мы пришли к простейшему дифференциальному уравнению первого порядка. В ходе решения этого уравнения мы определим функцию C ( x ) . Это позволит нам записать решение исходного ЛНДУ первого порядка следующим образом:

y = C ( x ) · e — ∫ P ( x ) d x

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Подведем итог

Метод вариации произвольной постоянной при решении ЛНДУ предполагает проведение трех этапов:

  • нахождение общего решения соответствующего ЛОДУ y ‘ + P ( x ) · y = 0 в виде y = C · e — ∫ P ( x ) d x ;
  • варьирование произвольной постоянной С , что заключается в замене ее функцией С ( x ) ;
  • подстановка функции y = C ( x ) · e — ∫ P ( x ) d x в исходное дифференциальное уравнение, откуда мы можем вычислить C ( x ) и записать ответ.

Теперь применим этот алгоритм к решению задачи.

Найдите решение задачи Коши y ‘ — 2 x y 1 + x 2 = 1 + x 2 , y ( 1 ) = 3 .

Нам нужно отыскать частное решение ЛНДУ y ‘ — 2 x y 1 + x 2 = 1 + x 2 при начальном условии y ( 1 ) = 3 .

В нашем примере P ( x ) = — 2 x 1 + x 2 и Q ( x ) = x 2 + 1 . Начнем с того, что найдем общее решение ЛОДУ. После этого применим метод вариации произвольной постоянной и определим общее решение ЛНДУ. Это позволит нам найти искомое частное решение.

Общим решением соответствующего ЛОДУ y ‘ — 2 x y 1 + x 2 = 0 будет семейство функций y = C · ( x 2 + 1 ) , где С – произвольная постоянная.

Варьируем произвольную постоянную y = C ( x ) · ( x 2 + 1 ) и подставляем эту функцию в исходное уравнение:
y ‘ — 2 x y 1 + x 2 = 1 + x 2 C x · ( x 2 + 1 ‘ — 2 x · C ( x ) · ( x 2 + 1 ) 1 + x 2 = 1 + x 2 C ‘ ( x ) · ( x 2 + 1 ) + C ( x ) · 2 x — 2 x · C ( x ) = 1 + x 2 C ‘ ( x ) = 1 ,

откуда C ( x ) = ∫ d x = x + C 1 , где C 1 – произвольная постоянная.

Это значит, что y = C ( x ) · ( x 2 + 1 ) = ( x + C 1 ) · ( x 2 + 1 ) — общее решение неоднородного уравнения.

Теперь приступим к отысканию частного решения, которое будет удовлетворять начальному условию y ( 1 ) = 3 .

Так как y = ( x + C 1 ) · ( x 2 + 1 ) , то y ( 1 ) = ( 1 + C 1 ) · ( 1 2 + 1 ) = 2 · ( 1 + C 1 ) . Обратившись к начальному условию, получаем уравнение 2 · ( 1 + C 1 ) = 3 , откуда C 1 = 1 2 . Следовательно, искомое решение задачи Коши имеет вид y = x + 1 2 · ( x 2 + 1 )

Теперь рассмотрим еще один метод решения линейных неоднородных дифференциальных уравнений y ‘ + P ( x ) · y = Q ( x ) .

Видео:10. ДУ. ЛНДУ 2 порядка. Метод вариации произвольных постоянных (2230 Минорский)Скачать

10. ДУ. ЛНДУ 2 порядка.  Метод вариации произвольных постоянных (2230 Минорский)

Еще один метод решения ЛНДУ первого порядка

Мы можем представить неизвестную функцию как произведение y = u ⋅ v , где u и v – функции аргумента x .

Мы можем подставить эту функцию в ЛНДУ первого порядка. Имеем:

y ‘ + P ( x ) · y = Q ( x ) ( u · v ) ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x )

Если найти такое v , чтобы оно было ненулевым частным решением дифференциального уравнения v ‘ + P ( x ) · v = 0 , то u можно будет определить из уравнения с разделяющимися переменными u ‘ · v = Q ( x ) .

Рассмотрим этот алгоритм решения на предыдущем примере. Это позволит нам сосредоточиться на главном, не отвлекаясь на второстепенные детали.

Найдите общее решение линейного неоднородного дифференциального уравнения y ‘ — 2 x y 1 + x 2 = 1 + x 2 .

Пусть y = u ⋅ v , тогда
y ‘ — 2 x y x 2 + 1 = x 2 + 1 ⇔ ( u · v ) — 2 x · u · v x 2 + 1 = x 2 + 1 u ‘ · v + u · v ‘ — 2 x · u · v x 2 + 1 = x 2 + 1 u ‘ · v + u · v ‘ — 2 x · v x 2 + 1 = x 2 + 1

Находим такое v , отличное от нуля, чтобы выражение в скобках обращалось в ноль. Иными словами, находим частное решение дифференциального уравнения v ‘ — 2 x · v x 2 + 1 = 0 .
v ‘ — 2 x · v x 2 + 1 = 0 ⇔ d v d x = 2 x · v x 2 + 1 ⇒ d v v = 2 x d x x 2 + 1 ⇔ d v v = d ( x 2 + 1 ) x 2 + 1 ∫ d v v = ∫ d ( x 2 + 1 ) x 2 + 1 ln v + C 1 = ln ( x 2 + 1 ) + C 2

Возьмем частное решение v = x 2 + 1 , соответствующее C 2 – С 1 = 0 .

Для этого частного решения имеем
u ‘ · v + u · v ‘ — 2 x · v x 2 + 1 = x 2 + 1 ⇔ u ‘ · ( x 2 + 1 ) + u · 0 = x 2 + 1 ⇔ u ‘ = 1 ⇔ u = x + C

Следовательно, общее решение исходного линейного неоднородного дифференциального уравнения есть y = u · v = ( x + C ) · ( x 2 + 1 )

Ответы в обоих случаях совпадают. Это значит, что оба метода решения, которые мы привели в статье, равнозначны. Выбирать, какой из них применить для решения задачи, вам.

Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Метод вариации произвольной постоянной решения линейных неоднородных уравнений

Пример №1 . Найдём общее решение уравнения y» + 4y’ + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y» + 4y’ + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y1 = e — x и y2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C1(x)e — x + C2(x)e -3 x . Для нахождения производных C’1, C’2 составляем систему уравнений (8)
C′1·e -x +C′2·e -3x =0
-C′1·e -x -3C′2·e -3x =9e -3x
решая которую, находим Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных, Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянныхИнтегрируя полученные функции, имеем Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных
Окончательно получим Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных

Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:
Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных
y(0) =1 + 3ln3
y’(0) = 10ln3

Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 — 4·1·8 = 4
Линейные неоднородные уравнения высших порядков метод вариации произвольных постоянных
Корни характеристического уравнения: r1 = 4, r2 = 2
Следовательно, фундаментальную систему решений составляют функции: y1=e 4x , y2=e 2x
Общее решение однородного уравнения имеет вид: y =C1·e 4x +C2·e 2x
Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C’i составляем систему уравнений:
C′1·e 4x +C′2·e 2x =0
C′1(4e 4x ) + C′2(2e 2x ) = 4/(2+e -2x )
Выразим C’1 из первого уравнения:
C’1 = -c2e -2x
и подставим во второе. В итоге получаем:
C’1 = 2/(e 2x +2e 4x )
C’2 = -2e 2x /(e 2x +2e 4x )
Интегрируем полученные функции C’i:
C1 = 2ln(e -2x +2) — e -2x + C * 1
C2 = ln(2e 2x +1) – 2x+ C * 2

Поскольку y =C1·e 4x +C2·e 2x , то записываем полученные выражения в виде:
C1 = (2ln(e -2x +2) — e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x
C2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) — e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x

Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3

Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) — 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C1 e 2x + C2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C1 + C2 +4 ln(3)+ ln(3)-2) = 4C1 + 2C2 +10 ln(3) -4 = 10ln3

Получаем систему из двух уравнений:
3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
4C1 + 2C2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C1 + 2C2 = 4
или
C * 1 + C * 2 = 2
2C1 + C2 = 2
Откуда: C1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2e 4x ·ln(e -2x +2) — e 2x + e 2x ·ln(2e 2x +1) – 2x·e 2x + 2·e 2x

Видео:Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать

Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.

Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные. — презентация

Презентация была опубликована 9 лет назад пользователемlia-math.narod.ru

Похожие презентации

Видео:#Дифуры I. Урок 4. Линейные дифференциальные уравнения. Метод вариации произвольной постояннойСкачать

#Дифуры I. Урок 4. Линейные дифференциальные уравнения. Метод вариации произвольной постоянной

Презентация на тему: » Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные.» — Транскрипт:

1 Дифференциальные уравнения высших порядков Линейные неоднородные дифференциальные уравнения Метод вариации произвольных постоянных Линейные неоднородные ДУ второго порядка с правой частью специального вида 1/16

2 Линейные неоднородные дифференциальные уравнения Рассмотрим линейное неоднородное ДУ (ЛНДУ) второго порядка: 2/16 Уравнение: Теорема 1 (1) левая часть которого совпадает с левой частью ЛНДУ (1), называется соответствующим ему однородным уравнением. (2) Общим решением y уравнения (1) является сумма его произвольного частного решения y* и общего решения y = C 1 y 1 +C 2 y 2, соответствующего ему однородного уравнения: ( о структуре общего решения ЛНДУ)

3 Метод вариации произвольных постоянных Частное решение у* уравнения (1) можно найти, если известно общее решение соответствующего однородного уравнения методом вариации произвольных постоянных (метод Лагранжа). 3/16 Пусть — общее решение уравнения (2) Заменим в общем решении постоянные С 1 и С 2 на неизвестные функции С 1 (х), С 2 (х) : Чтобы функция (3) была решением уравнения (1), необходимо чтобы функции С 1 (х), С 2 (х) удовлетворяли системе уравнений: (3) (4)

4 Метод вариации произвольных постоянных Определитель системы: 4/16 так как это определитель Вронского для фундаментальной системы частных решений уравнения (2). Поэтому система (4) имеет единственное решение: Интегрируя функции находим С 1 (х), С 2 (х) а затем по формуле (3) составляем частное решение уравнения (1).

5 Метод вариации произвольных постоянных 5/16 Найдем общее решение соответствующего однородного уравнения: Найдем частное решение исходного уравнения: Составим систему:

6 Метод вариации произвольных постоянных 6/16 Решим систему методом Крамера:

7 Метод вариации произвольных постоянных 7/16 Запишем частное решение уравнения: Следовательно, общим решением уравнения будет:

8 ЛНДУ второго порядка с правой частью специального вида Рассмотрим ЛНДУ второго порядка с постоянными коэффициентами: 8/16 (5) Согласно теореме 1, общее решение этого уравнения ищется в виде: Для уравнений с постоянными коэффициентами существует более простой способ нахождения y*, если правая часть уравнения f(x) имеет так называемый специальный вид: I II

9 ЛНДУ второго порядка с правой частью специального вида Суть метода, называемого методом неопределенных коэффициентов, заключается в следующем: по виду правой части f(x) уравнения (5) записывают ожидаемую форму частного решения с неопределенными коэффициентами, затем подставляют ее в уравнение (5) и из полученного тождества находят значения коэффициентов. 9/16 Правая часть имеет вид: I Многочлен n — ой степени Действительное число Уравнение (5) запишется в виде: Частное решение ищем в виде: где r – число, равное кратности α как корня характеристического уравнения; записанный с неопределенными коэффициентами — многочлен степени n,

10 ЛНДУ второго порядка с правой частью специального вида 10/16 rnY* r = 0 ( α не является корнем хар. уравнения: ) r = 1 : r = 2:0 1 2

11 ЛНДУ второго порядка с правой частью специального вида 11/16 Найти общее решение уравнения: Найдем общее решение соответствующего однородного уравнения: Найдем частное решение исходного уравнения: α = 0 не является корнем характеристического уравнения Подставим в исходное уравнение:

12 ЛНДУ второго порядка с правой частью специального вида 12/16 Приравняем коэффициенты при одинаковых степенях x : Общее решение исходного уравнения:

13 ЛНДУ второго порядка с правой частью специального вида 13/16 Правая часть имеет вид: Частное решение ищем в виде: где r – число, равное кратности α + iβ как корня характеристического уравнения; неопределенными коэффициентами, где l — наивысшая степень многочленов P и Q, то есть: — многочлены степени l, записанные с II Многочлены степени n и m Действительные числа

14 ЛНДУ второго порядка с правой частью специального вида 14/16 r l Y* r = r = 1 : 0 1

15 ЛНДУ второго порядка с правой частью специального вида 15/16 Найти общее решение уравнения: Найдем общее решение соответствующего однородного уравнения: Найдем частное решение исходного уравнения: Число является корнем хар. уравнения, поэтому r = 1 = 36 = 0

16 ЛНДУ второго порядка с правой частью специального вида 16/16 Подставим в исходное уравнение: Приравняем коэффициенты при sin x и при cos x

🔥 Видео

Линейные неоднородные ДУ высших порядков с пост коэф. Метод вариации постоянных. Часть 1Скачать

Линейные неоднородные ДУ высших порядков с пост коэф. Метод вариации постоянных. Часть 1

Асташова И. В. - Дифференциальные уравнения I - Метод вариации произвольных постоянныхСкачать

Асташова И. В. - Дифференциальные уравнения I - Метод вариации произвольных постоянных

Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравненийСкачать

Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравнений

Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядковСкачать

Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядков

Метод вариации произвольных постоянных ЛагранжаСкачать

Метод вариации произвольных постоянных Лагранжа

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

#Дифуры II. Урок 4. Линейные неоднородные диф. уравнения n-го порядка с постоянными коэффициентамиСкачать

#Дифуры II. Урок 4. Линейные неоднородные диф. уравнения n-го порядка с постоянными коэффициентами

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа
Поделиться или сохранить к себе: