Дифференциальным уравнением с частными производными называется уравнение вида
(1)
связывающее независимые переменные x1, х2, … , хn искомую функцию и = и(х1, х2,…, хn) и ее частные производные (наличие хотя бы одной производной обязательно). Здесь ki,k2,… ,кn — неотрицательные целые числа, такие, что к1 + к2 + … + кп = т.
Порядком дифференциального уравнения называется наивысший порядок входящие в уравнение частных производных. Так, если х, у — независимые переменные, и = и(х, у) — искомая функция, то
— дифференциальное уравнение 1-го порядка;
— дифференциальные уравнения 2-го порядка.
Для упрощения записи пользуются также следующими обозначениями:
Пусть имеем дифференциальное уравнение с частными производными (1) порядка т. Обозначим через С m (D) множество функций, непрерывных в области D вместе со всеми производными до порядка m включительно.
Определение:
Решением дифференциального уравнения (1) в некоторой области D изменения независимых переменных x1, x2…xn,. называется всякая функция и = и(х1, х2,…, xп) ∈ С m (D) такая, что подстановка этой функции и ее производных в уравнение (1) обращает последнее в тождество по x1, x2, …., хп в области D.
Пример:
Найти решение и = и(х,у) уравнения
Равенство (2) означает, что искомая функция и не зависит опт х, но может быть любой функцией от у,
u = φ(y). (3)
Таким образом, решение (3) уравнения (2) содержит одну произвольную функцию. Это — общее решение уравнения (2).
Приме:
Найти решение u = u(z, у) уравнения
Положим = о. Тогда уравнение (4) примет вид = 0. Его общим решением будет произвольная функция v = w(у). Поскольку v= приходим к уравнению = w(у). Интегрируя по у (считая х параметром), получим
где g(x) — произвольная функция. Так как w(у) — произвольная функция, то и интеграл от нее также является произвольной функцией; обозначим его через f(у). В результате получим решение уравнения (4) в виде
u(x, y) = f(y) + g(x) (5)
произвольные дифференцируемые функции).
Решение (5) уравнения с частными производными 2-го порядка (4) содержит уже две произвольные функции. Его называют общим решением уравнения (4), так как всякое другое решение уравнения (4) может быть получено из (5) подходящим выбором функций f и g.
Мы видим, таким образом, что уравнения с частными производными имеют целые семейства решений. Однако существуют уравнения с частными производными, множества решений которых весьма узки и, в некоторых случаях, да же пусты.
Пример:
Множество действительных решений уравнения
исчерпывается функцией u(x, y) = const, а уравнение
вовсе не имеет действительных решений.
Мы не ставим пока вопрос об отыскании частных решений. Позже будет выяснено, какие дополнительные условия нужно задать, чтобы с их помощью можно было выделить частное решение, т.е. функцию, удовлетворяющую как дифференциальному уравнению, так и этим дополнительным условиям.
- Линейные дифференциальные уравнения с частными производными. Свойства их решений
- Классификация линейных дифференциальных уравнений второго порядка с двумя независимыми переменными
- Постановка основных задач для линейных дифференциальных уравнений второго порядка
- Примеры по дифференциальным уравнениям в частных производных
- Немного теории
- Приведение к каноническому виду
- Решение ДУ в ЧП
- Разные задачи на исследование ДУ в ЧП
- Помощь с решением ДУ в ЧП
- Электронная библиотека
- 📹 Видео
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Линейные дифференциальные уравнения с частными производными. Свойства их решений
Уравнение с частными производными называется линейным, если оно линейно относительно искомой функции и всех ее производных, входящих в уравнение; в противном случае уравнение называется нелинейным.
Пример:
— линейное уравнение; уравнения
Линейное дифференциальное уравнение 2-го порядка для функции двух независимых переменных х, у в общем случае имеет вид
(1)
где А(х, у), В(х, у), …, с(х,у), f(x,y) — функции переменных х, у, заданные в некоторой области D плоскости хОу. Если f(x,y) ≡ 0 в D, то уравнение (1) называется однородным, в противном случае — неоднородным.
Обозначив левую часть уравнения (1) через L[u], запишем (1) в виде
L[u] = f(x, у). (2)
Соответствующее однородное уравнение запишется так:
L[u] = 0. (3)
Здесь L — линейный дифференциальный оператор, определенный на линейном пространстве C 2 (D) функций и = и(х, у).
Пользуясь свойством линейности оператора L, легко убедиться в справедливости следующих теорем, выражающих свойства решений линейных однородных дифференциальных уравнений с частными производными.
Теорема:
Если и(х, у) есть решение линейного однородного уравнения (3), то си(х, у), где с — любая постоянная, есть также решение уравнения (3).
Теорема:
Если и1(х, у) и и2(х, у) — решения линейного однородного уравнения (3), то сумма и1(х, у) + и2(x, у) есть также решение этого уравнения.
Следствие:
Если каждая из функций и1(х, у) и и2(х, у), u k(x, у) является решением уравнения (3), то линейная комбинация
где c1, c2 …, сk — произвольные постоянные, также является решением этого уравнения.
В отличие от обыкновенного линейного однородного дифференциального уравнения, имеющего конечное число линейно независимых частных решений, линейная
комбинация которых дает общее решение этого уравнения, уравнение с частными производными может иметь бесконечное множество линейно независимых частных решений.
Пример:
имеет общее решение k = φ(х), так что решениями его будут, например, функции 1,х,…, х n ,… . В соответствии с этим в линейных задачах для уравнений с частными производными нам придется иметь дело не только с линейными комбинациями конечного числа решений, но и с рядами , членами которых являются произведения постоянных Сп на частные решения иn(х, у) дифференциального уравнения.
Возможны случаи, когда функция и(х, у; λ) при всех значениях параметра λ из некоторого интервала (λо, λ1), конечного или бесконечного, является решением уравнения (3). В этом случае говорят, что решения уравнения зависят от непрерывно меняющегося параметра λ. Если теперь взять функцию С(λ) такую, что первые и вторые производные интеграла
по х и по у могут быть получены с помощью дифференцирования под знаком интеграла, то этот интеграл также будет решением уравнения (3). Для линейного неоднородного уравнения
L[u] = f (4)
справедливы следующие предложения.
Теорема:
Если и(х, у) есть решение линейного неоднородного уравнения (4), a v(x, у) — решение соответствующего однородного уравнения (3), то сумма и + v есть решение неоднородного уравнения (4).
Теорема:
Принцип суперпозиции. Если и1(х, у) —решение уравнения L[u] = f1, a u2(x,y) — решение уравнения L[u] = f2, то и1 + u2 — решение уравнения L[u] = f1 + f2.
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать
Классификация линейных дифференциальных уравнений второго порядка с двумя независимыми переменными
Определение:
Линейное дифференциальное уравнение второго порядка
в некоторой области Q на плоскости хОу называется
1) гиперболическим в Ω, если
2) параболическим в Ω, если
3) эллиптическим в Ω, если
Пользуясь этим определением, легко проверить, что уравнения
— гиперболические при всех х и у, уравнение
— параболическое при всех х и у, а уравнение
— эллиптическое при всех х и у. Уравнение
— эллиптическое при у > 0, параболическое на линии у = 0 и гиперболическое в полуплоскости у
с помощью которой уравнение (1) преобразуется к более простому, каноническому виду, своему для каждого типа уравнения.
Уравнение гиперболического типа (∆ > 0) преобразуется к вшу
(два канонических вида уравнений гиперболического типа).
Уравнение параболического типа (∆ ≡ 0) преобразуется к виду
(канонический вид уравнения параболического типа).
Уравнение эллиптического типа (∆
(канонический вид уравнения эллиптического типа). Здесь F и Ф — некоторые функции, зависящие от искомой функции и, ее первых производных и независимых переменных ξ, η. Вид функций F и Ф определяется исходным уравнением (1).
В некоторых случаях каноническая форма уравнения позволяет найти общее решение исходного уравнения.
Как правило, приведениеуравнения(1) к каноническому виду путем замены независимых переменных имеет локальный характер, т. е. осуществимо лишь в некоторой достаточно малой окрестности рассматриваемой точки Mo(xo, уo).
Когда число п независимых переменных больше двух, также различают уравнения гиперболического, параболического и эллиптического типов. Например, при п = 4 простейшая каноническая форма таких уравнений имеет вид
Здесь и = и(х, у, z, t).
Замечание:
В общем случае, когда число независимых переменных больше двух, приведение линейною уравнения с переменными коэффициентами
к каноническому виду возможно только в данной точке и невозможно в любой сколь угодно малой окрестности этой точки.
Мы ограничимся рассмотрением линейных дифференциальных уравнений 2-го порядка. К таким уравнениям приводит большое количество различных физических задач.
Так, колебательные процессы различной природы (колебания струн, мембран, акустические колебания газа в трубах, электромагнитные колебания и т. д.) описываются уравнениями гиперболического типа. Простейшим из таких уравнений является уравнение колебаний струны (одномерное волновое уравнение): (2)
Здесь х — пространственная координата, t — время, где Т — натяжение струны, р — ее линейная плотность.
Процессы теплопроводности и диффузии приводят к уравнениям параболического типа. В одномерном случае простейшее уравнение теплопроводности имеет вид
(3)
Здесь где р — плотность среды, с — удельная теплоемкость, k — коэффициент теплопроводности.
Наконец, установившиеся процессы, когда искомая функция не зависит от времени, определяются уравнениями эллиптического типа, типичным представителем которых является уравнение Лапласа
(4)
Непосредственной проверкой убеждаемся в том, что решением уравнения (2) является всякая функция и(х, t) вида
Можно показать, что решениями уравнения (3) являются функции вида
произвольные постоянные, А — числовой параметр). Интегрируя решение и(х, t; λ) = уравнения (3) по параметру λ в пределах от — ∞ до + ∞ , получим так называемое фундаментальное решение U(x, t) = уравнения теплопроводности.
Наконец, нетрудно убедиться, что действительнозначные функции Рn(х,у) и Qn(x, у), определяемые из соотношения
являются решениями уравнения Лапласа (4) для п = 0, 1, 2…..Этот последний результат есть частный, случай общего утверждения, что и действительная и мнимая части аналитической функции
f(z) = u(x, у) + iv(x, у)
комплексного переменного z = х + iy являются решениями уравнения Лапласа (4).
В силу линейности уравнения (4) ряды
тоже будут решениями уравнения (4), если они сходятся равномерно, как и ряды, полученные из них двукратным почленным дифференцированием по каждому из аргументов х, у.
Таким образом, для простейшей — канонической — формы уравнений гиперболического, параболического и эллиптического типов мы располагаем о решениях этих уравнений некоторой информацией.
Видео:Линейные дифференциальные уравнения в частных производныхСкачать
Постановка основных задач для линейных дифференциальных уравнений второго порядка
Для полного описания того или иного физического процесса мало иметь только дифференциальное уравнение процесса, надо еще задать начальное состояние этого процесса (начальные условия) и режим на границе S той области Ω, в которой процесс происходит (граничные условия). Это обусловлено неединственностью решения дифференциальных уравнений.
Пример:
Общее решение уравнения
имеет вид и(х, у) = f(x) + g(y), где f(x) и g(y) — произвольные дифференцируемые функции. Поэтому чтобы выделить решение, описывающее данный физический процесс, необходимо задать дополнительные условия.
Различают три основных типа задач для дифференциальных уравнений с частными производными (число независимых переменных равно п):
а) задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область Ω совпадает со всем пространством R n , граничные условия отсутствуют;
б) краевая задача для уравнений эллиптического типа: задаются граничные условия на границе S области Ω, начальные условия отсутствуют;
в) смешанная задача для уравнений гиперболического и параболического типов: задаются начальные и граничные условия, Ω ≠ R n
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать
Примеры по дифференциальным уравнениям в частных производных
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Немного теории
Дифференциальным уравнением с частными производными (ДУ с ЧП) называется уравнение относительно неизвестной функции нескольких переменных (ФНП) и ее частных производных. Наивысший порядок частных производных (существенно входящих в уравнение) называется порядком этого уравнения.
ДУ с ЧП называется линейным (ЛДУ с ЧП), если неизвестная функция и ее производные входят в это ДУ линейно (в первой степени).
В этом разделе вы найдете подробно решенные задачи по темам: классификация и приведение к каноническому виду ДУ с ЧП второго порядка с двумя переменными, определение типа уравнения, решение уравнений и систем ДУ в ЧП.
ДУ с ЧП находят широкое применение в прикладных науках: квантовая механика, электродинамика, термодинамика, теория теплои массопереноса и др. при математическом описании и моделировании различных физических процессов. Поэтому такие уравнения изучаются под общим названием уравнений математической физики (примеры решений 16 задач).
Видео:УМФ 1. Линейные ДУ с частными производными второго порядка.Скачать
Приведение к каноническому виду
Задача 1. Привести к каноническому виду уравнение
Задача 2. Привести уравнение к каноническому виду.
Задача 3. Найти общее решение уравнения, приведя его к каноническому виду:
Видео:2. Приведение уравнений второго порядка к каноническому видуСкачать
Решение ДУ в ЧП
Задача 4. Решить уравнение Пфаффа
$$ z^2 dx +zdy +(3zx +2y)dz=0. $$
Задача 5. Решить задачу Коши для уравнения в частных производных
$$ u_-2Delta u =(x^2+y^2+z^2)t; quad u(t=0)=xyz, u_t(t=0)=x-y. $$
Задача 6. Найти общее решение уравнения в частных производных
Задача 7. Найти общее решение уравнения в частных производных первого порядка.
$$ xy u_x +(x-2u)u_y = yu. $$
Задача 8. Найти решение задачи Коши для уравнения в частных производных
$$ y u_x -xy u_y=2xu, quad u(x+y=2)=1/y. $$
Задача 9. Решить систему дифференциальных уравнений в частных производных
Видео:Уравнения в частных производных первого порядка| poporyadku.schoolСкачать
Разные задачи на исследование ДУ в ЧП
Задача 10. Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию
Задача 11. Найти области гиперболичности, эллиптичности и параболичности уравнения и исследовать их зависимость от $l$, где $l$ – числовой параметр.
Задача 12. Найти функцию, гармоническую внутри круга радиуса $R$ c центром в начале координат и такую, что
Видео:Найти общее решение уравнения в частных производных первого порядка.Скачать
Помощь с решением ДУ в ЧП
Если вам нужна помощь с решением задач и контрольных по дифференциальным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.
Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Электронная библиотека
Введем обозначения (для сокращения и удобства письма):
Пусть дано уравнение
Это уравнение называется линейным. Если , то уравнение называется линейным однородным, в противном случае линейным неоднородным. Если все коэффициенты постоянные, то уравнение называется линейным уравнением с постоянными коэффициентами.
Практика и теория подтверждает, что с помощью преобразования переменных данное дифференциальное уравнение остается линейным:
где коэффициенты [7]:
Спрашивается: нельзя ли выбрать переменные и так, чтобы в преобразованном уравнении (4.2) некоторые коэффициенты обратились в нуль? Эта возникшая задача связана с решением обыкновенного дифференциального уравнения, которое называется характеристическим для исходного с частными производными:
Его интегралы называются характеристиками.
Если – общий интеграл (4.3), то, положив , мы обратим в нуль коэффициент при .
Если – другой интеграл (4.3), линейно независим от , то полагают , тем самым в нуль обращают при .
Уравнение (4.3.) можно записать так:
Если , то и – действительные и различные. Делая замену, приводим уравнение к виду:
В этом случае говорят, что уравнение имеет гиперболический тип. Если положить , , то уравнение примет вид:
Если , то имеем один общий интеграл . Пусть – любая функция, линейно независимая от , тогда: , и исходное уравнение будет иметь вид:
В этом случае говорят, что уравнение имеет параболический тип.
Если , то характеристическое уравнение имеет комплексно сопряженные интегралы:
и, положив уравнение приведем к виду:
который называется эллиптическим.
Если коэффициенты линейного уравнения постоянные, то характеристическое уравнение имеет решение:
При уравнение приводится к виду:
который называется гиперболическим.
При уравнение приводится к параболическому типу:
При уравнение приводится к эллиптическому типу:
Привести к каноническому виду уравнение:
Решение. Запишем, чему равны для нашего случая коэффициенты.
Так как: имеем уравнение параболического типа.
Характеристическое уравнение имеет вид:
Решая его, находим, что общий интеграл x – y = C.
Положим , а в качестве другой переменной возьмем . При этом: Тогда
Подставляя значения частных производных в исходное уравнение, после простых преобразований получим:
Привести к каноническому виду уравнение:
Решение. т.е. имеем уравнение эллиптического типа. Составим уравнение характеристик: или .
Отсюда ; получаем два семейства комплексно сопряженных характеристик:
Делаем замену переменных: ;
Подставив эти значения в исходное уравнение, получим
Привести к каноническому виду уравнение:
Решение. Здесь – уравнение гиперболического типа. Уравнение характеристик:
Проинтегрировав эти уравнения, получим два семейства характеристик:
т.е. получили уравнения характеристик. Вводим новые переменные: . Далее необходимо выразить частные производные по старым переменным через новые (требуется использовать правило дифференцирования сложной функции двух независимых переменных):
далее рекомендуется найти производные второго порядка самостоятельно в качестве упражнений и получить окончательный результат:
Получили уравнение канонического вида.
Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00
📹 Видео
Простейшие уравнения в частных производныхСкачать
Тема 2. Линейные однородные дифференциальные уравнения в частных производных первого порядкаСкачать
Дифференциальное уравнение второго порядкаСкачать
6. Линейные однородные уравнения в частных производных первого порядкаСкачать
Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Тема 3. Квазилинейные, неоднородные дифференциальные уравнения в частных производных первого порядкаСкачать