Уравнение вида ax = b, где x — неизвестное, a и b — числа, называется уравнением с одним неизвестным или линейным уравнением.
Число a называется коэффициентом при неизвестном, а число b — свободным членом.
Если в уравнении ax = b коэффициент не равен нулю (a ≠ 0), то, разделив обе части уравнения на a, получим . Значит, уравнение ax = b, в котором a ≠ 0, имеет единственный корень .
Если в уравнении ax = b коэффициент равен нулю (a = 0), а свободный член не равен нулю (b ≠ 0), то уравнение не имеет корней, так как равенство 0x = b, где b ≠ 0, не является верным ни при каком значении x.
Если в уравнении ax = b и коэффициент, и свободный член равны нулю (a = 0 и b = 0), то уравнение имеет бесконечное множество корней, так как равенство 0x = 0 верно при любом значении x.
- Решение уравнений с одним неизвестным
- Линейные уравнения с одной переменной
- Примеры решения линейных уравнений с одной переменной.
- Решение линейных неравенств
- Основные понятия
- Типы неравенств
- Линейные неравенства: свойства и правила
- Правила линейных неравенств
- Решение линейных неравенств
- Равносильные преобразования
- Метод интервалов
- Графический способ
- Решение линейного уравнения ax + b = 0
- 💥 Видео
Видео:Алгебра 7 класс. Линейное уравнение с одной переменной ax=b.Скачать
Решение уравнений с одним неизвестным
Все уравнения с одним неизвестным решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения уравнений:
- освобождение от дробных членов;
- раскрытие скобок;
- перенос всех членов, содержащих неизвестное, в одну часть, а известные — в другую (члены с неизвестными, как правило, переносят в левую часть уравнения);
- сделать приведение подобных членов;
- разделить обе части уравнения на коэффициент при неизвестном.
Пример 1. Решить уравнение
- Освобождаем уравнение от дробных членов:
20x — 28 — 24 = 9x + 36.
20x — 9x = 36 + 28 + 24.
Выполняем приведение подобных членов:
Делим обе части уравнения на коэффициент при неизвестном (на 11):
Делаем проверку, подставив в данное уравнение вместо x его значение:
Уравнение обратилось в верное равенство, следовательно, корень был найден верно.
Пример 2. Решить уравнение
- Это уравнение проще решить, не раскрывая скобок, поэтому делим обе части уравнения на 5:
Выполняем приведение подобных членов:
5(11 — 2) = 45; 5 · 9 = 45; 45 = 45. |
Обычно все рассуждения при решении уравнения производят устно, а само решение записывается так:
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Линейные уравнения с одной переменной
Уравнение вида ax = b, где x — переменная, а a и b — некоторые числа, называется линейным уравнением с одной переменной.
Если коэффициент a ≠ 0, то решение этого уравнения единственно и равно x =
.
Если же a = 0, а b ≠ 0, то уравнение корней не имеет, так как 0*x ≠ b ни при каком b ≠ 0.
Осталось рассмотреть случай a = 0 и b = 0. В этом случае любое значение x будет корнем уравнения, так как равенство 0*x = 0 верно для любого значения x.
Таким образом, линейное уравнение ax = b имеет единственный корень при a ≠ 0, вообще не имеет корней при a = 0 и b ≠ 0, и имеет бесконечное число корней при a = 0 и b = 0.
Примеры решения линейных уравнений с одной переменной.
Пример 1. Решить уравнение x = -x.
x = -x x + x=0 2x=0 x=0/2 x=0.
Пример 2. Решить уравнение 3(2.5 — 2x) = 5 — 6x.
3(2.5 — 2x) = 5 — 6x 7.5 — 6x = 5 — 6x -6x + 6x = 5 — 7.5 0*x = -2.5.
Но 0 ≠ -2.5 ни при каком x. Следовательно, уравнение не имеет корней.
Ответ: корней нет.
Пример 3. Решить уравнение 8x = 6 + 2(4x — 3).
8x = 6 + 2(4x — 3)x 8x = 6 + 8x — 6 8x — 8x = 6 — 6 0*x = 0. Мы получили тождество, верное для любых значений x. Следовательно, корнем уравнения является любое число.
Ответ: x — любое число.
Пример 4. Решить уравнение 3x — (10 + 5x) = 54.
3x — (10 + 5x) = 54 3x — 10 — 5x = 54 -2x = 54 + 10 -2x = 64 x = -32.
Пример 5. Решить уравнение 6x — (x — 1) = 4 + 5x.
6x — (x — 1) = 4 + 5x 6x — x + 1 = 4 + 5x 5x — 5x = 4 — 1 0 = 3.
Но 0 ≠ 3 ни при каком x. Следовательно, уравнение не имеет корней.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Решение линейных неравенств
О чем эта статья:
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Неравенство — это алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.
Линейные неравенства — это неравенства вида:
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти все значения переменной, при которой неравенство верное.
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Типы неравенств
- Строгие — используют только больше (>) или меньше ( b — это значит, что a больше, чем b.
- a > b и b > и
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
- Если а > b , то b а.
- Если а > b и b > c, то а > c. И также если а b, то а + c > b+ c (и а – c > b – c).
Если же а b и c > d, то а + c > b + d.
Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа
Обе части можно умножить или разделить на одно отрицательное число, при этом знак неравенства поменять на противоположный.
- Если а > b и c > d, где а, b, c, d > 0, то аc > bd.
Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Видео:7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Правила линейных неравенств
- Любой член можно перенести из одной части в другую с противоположным знаком. Знак неравенства при этом не меняется.
- 2x − 3 > 6 ⇒ 2x > 6 + 3 ⇒ 2x > 9.
- Обе части можно умножить или разделить на одно положительное число. Знак неравенства при этом не меняется.
- Умножим обе части на пять 2x > 9 ⇒ 10x > 45.
- Обе части можно умножить или разделить на одно отрицательное число. Знак неравенства при этом меняется на противоположный.
- Разделим обе части на минус два 2x > 9 ⇒ 2x : (–2) > 9 : (–2) ⇒ x
Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать
Решение линейных неравенств
Линейные неравенства с одной переменной x выглядят так:
где a и b — действительные числа. А на месте x может быть обычное число.
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Равносильные преобразования
Для решения ax + b , ≥) нужно применить равносильные преобразования неравенства. Рассмотрим два случая: когда коэффициент равен и не равен нулю.
Алгоритм решения ax + b , ≥) является верным, когда исходное имеет решение при любом значении. Неверно тогда, когда исходное не имеет решений.
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
- Данное неравенство 0 * x + 5 > 0 может принимать любое значение x.
- Получается верное числовое неравенство 5 > 0. Значит его решением может быть любое число.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов заключается в следующем:
- вводим функцию y = ax + b;
- ищем нули для разбиения области определения на промежутки;
- отмечаем полученные корни на координатной прямой;
- определяем знаки и отмечаем их на интервалах.
Алгоритм решения ax + b , ≥) при a ≠ 0 с использованием метода интервалов:
- найдем нули функции y = ax + b для решения уравнения ax + b = 0.
Если a ≠ 0, тогда решением будет единственный корень — х₀;
- начертим координатную прямую с изображением точки с координатой х₀, при строгом неравенстве точку рисуем выколотой, при нестрогом — закрашенной;
- определим знаки функции y = ax + b на промежутках.
Для этого найдем значения функции в точках на промежутке;
- если решение неравенства со знаками > или ≥ — добавляем штриховку над положительным промежутком на координатной прямой, если 0.
Как решаем:
В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Определим знаки на промежутках.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
Определяем знак на промежутке (2, + ∞) , тогда подставляем значение х = 3. Получится, что −6 * 3 + 12 = − 6, − 6
Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
- во время решения ax + b 0 определить промежуток, где график изображается выше Ох;
- во время решения ax + b ≥ 0 определить промежуток, где график находится выше оси Ох или совпадает.
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
- Так как коэффициент при x отрицательный, данная прямая является убывающей.
- Координаты точки пересечения с Ох равны (−√3 : 5; 0).
- Неравенство имеет знак >, значит нужно обратить внимание на промежуток выше оси Ох.
- Поэтому открытый числовой луч (−∞, −√3 : 5) будет решением.
Ответ: (−∞, −√3 : 5) или x
Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Решение линейного уравнения ax + b = 0
Линейное уравнение ax + b = 0
Решение заключается в выполнении математической операции x = -b/a
Уравнение 10х + 5 = 0
Тогда x = -5 / 10 = -1/2 = -0.5
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор решения любого линейного уравнения. С помощью этого калькулятора вы в один клик сможете быстро вычислить корень линейного уравнения.
💥 Видео
Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать
Решение уравнений, 6 классСкачать
Линейное уравнение с одной переменной | Алгебра 7 класс #17 | ИнфоурокСкачать
Линейное уравнение с одной переменнойСкачать
Линейное уравнение с одной переменнойСкачать
Линейное уравнение с одной переменной - как решать?Скачать
Линейное уравнение с двумя переменными и его график. График линейной функции - 7 класс алгебраСкачать
Линейные уравнения с одной переменной . Алгебра . 7 класс .Скачать