Линейное дифференциальное уравнение относительно x

Линейные уравнения первого порядка

Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения однородных и неоднородных линейных дифференциальных уравнений вида y’+y=b(x) .

  • Решение онлайн
  • Видеоинструкция

Теорема. Пусть a1(x) , a0(x) , b(x) непрерывны на отрезке [α,β], a1≠0 для ∀x∈[α,β]. Тогда для любой точки (x0, y0), x0∈[α,β], существует единственное решение уравнения, удовлетворяющее условию y(x0) = y0 и определенное на всем интервале [α,β].
Рассмотрим однородное линейное дифференциальное уравнение a1(x)y’+a0(x)y=0 .
Разделяя переменные, получаем Линейное дифференциальное уравнение относительно x, или, интегрируя обе части, Линейное дифференциальное уравнение относительно xПоследнее соотношение, с учетом обозначения exp(x) = e x , записывается в форме
Линейное дифференциальное уравнение относительно x
Попытаемся теперь найти решение уравнения в указанном виде, в котором вместо константы C подставлена функция C(x) то есть в виде
Линейное дифференциальное уравнение относительно x
Подставив это решение в исходное, после необходимых преобразований получаем Линейное дифференциальное уравнение относительно xИнтегрируя последнее, имеем
Линейное дифференциальное уравнение относительно x
где C1— некоторая новая константа. Подставляя полученное выражение для C(x), окончательно получаем решение исходного линейного уравнения
Линейное дифференциальное уравнение относительно x.

Описанный метод решения называется методом Лагранжа или методом вариации произвольной постоянной (см. также Метод вариации произвольной постоянной решения линейных неоднородных уравнений).

Пример . Решить уравнение y’ + 2y = 4x . Рассмотрим соответствующее однородное уравнение y’ + 2y = 0 . Решая его, получаем y = Ce -2 x . Ищем теперь решение исходного уравнения в виде y = C(x)e -2 x . Подставляя y и y’ = C'(x)e -2 x — 2C(x)e -2 x в исходное уравнение, имеем C'(x) = 4xe 2 x , откуда C(x) = 2xe 2 x — e 2 x + C1 и y(x) = (2xe 2 x — e 2 x + C1)e -2 x = 2x — 1 + C1e -2 x — общее решение исходного уравнения. В этом решении y1(x) = 2x-1 — движение объекта под действием силы b(x) = 4x, y2(x) = C1e -2 x -собственное движение объекта.

Пример №2 . Найти общее решение дифференциального уравнения первого порядка y’+3 y tan(3x)=2 cos(3x)/sin 2 2x.
Это неоднородное уравнение. Сделаем замену переменных: y=u•v, y’ = u’v + uv’.
3u v tg(3x)+u v’+u’ v = 2cos(3x)/sin 2 2x или u(3v tg(3x)+v’) + u’ v= 2cos(3x)/sin 2 2x
Решение состоит из двух этапов:
1. u(3v tg(3x)+v’) = 0
2. u’v = 2cos(3x)/sin 2 2x
1. Приравниваем u=0, находим решение для 3v tg(3x)+v’ = 0
Представим в виде: v’ = -3v tg(3x)
Линейное дифференциальное уравнение относительно x
Интегирируя, получаем:
Линейное дифференциальное уравнение относительно x
ln(v) = ln(cos(3x))
v = cos(3x)
2. Зная v, Находим u из условия: u’v = 2cos(3x)/sin 2 2x
u’ cos(3x) = 2cos(3x)/sin 2 2x
u’ = 2/sin 2 2x
Интегирируя, получаем: Линейное дифференциальное уравнение относительно x
Из условия y=u•v, получаем:
y = u•v = (C-cos(2x)/sin(2x)) cos(3x) или y = C cos(3x)-cos(2x) ctg(3x)

Видео:8. Дифференциальные уравнения, линейные относительно х и х'Скачать

8. Дифференциальные уравнения, линейные относительно х и х'

Дифференциальные уравнения первого порядка, приводящиеся к линейным

Линейное дифференциальное уравнение относительно x

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Метод решения

К линейным уравнениям первого порядка приводится уравнения вида:
(1) ,
где z – функция от y ; p и q – функции от x .
Действительно, по правилу дифференцирования сложной функции:
.
Подставляя в (1), получаем уравнение, линейное относительно z :
.

Видео:Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

Дифференциальные уравнения, линейные относительно переменной x

Ранее мы рассматривали уравнения, линейные относительно переменной y . То есть мы считали, что x является независимой переменной, а y является зависимой переменной. Однако, всегда стоит иметь в виду, что возможен противоположный подход. То есть можно считать переменную y независимой переменной, а x – зависимой переменной. На практике часто встречаются задачи, в которых уравнение линейно относительно переменной x , а не y . В общем виде такое уравнение можно записать так:
(2) ,
где P, Q, R –функции от y .

Покажем, что это уравнение линейно относительно переменной x . Для этого выполняем преобразования. Представим производную в виде отношения дифференциалов:
.
Тогда уравнение (2) примет вид:
.
Умножаем на и выполняем алгебраические преобразования:
;
.
Разделив на R ( y ) , приводим уравнение к виду:
,
где .
Это – линейное относительно x дифференциальное уравнение.

Видео:Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1Скачать

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1

Пример решения дифференциального уравнения, приводящегося к линейному уравнению первого порядка

Решить уравнение:
(П.1) .

Подставим в (П.1):
.
Считаем, что y – это независимая переменная, а x – зависимая. То есть x – это функция от y . Умножим на :
(П.2) .
Делаем подстановку:
.
Здесь z – сложная функция от y , .
Дифференцируем по y . По правилу дифференцирования сложной функции:
.
Подставляем в (П.2):
;
.
Это линейное, относительно z , дифференциальное уравнение. Решаем его с помощью интегрирующего множителя. Умножаем уравнение на интегрирующий множитель e y :
;
;
.
Интегрируем по частям:

;

;
;
.
Переходим к переменной x :
;
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 05-08-2012 Изменено: 26-06-2015

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

📹 Видео

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Курс по ОДУ: Уравнения, не разрешённые относительно производной | Занятие 7Скачать

Курс по ОДУ: Уравнения, не разрешённые относительно производной | Занятие 7

Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейное дифференциальное уравнение Коши-Эйлера

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа

Дифференциальные уравнения не разрешенные относительно производной | poporyadku.schoolСкачать

Дифференциальные уравнения не разрешенные относительно производной | poporyadku.school

Jah Khalib, Maruv - По льду (Текст/лирик)Скачать

Jah Khalib, Maruv - По льду (Текст/лирик)

#Дифуры I. Урок 4. Линейные дифференциальные уравнения. Метод вариации произвольной постояннойСкачать

#Дифуры I. Урок 4. Линейные дифференциальные уравнения. Метод вариации произвольной постоянной

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать

Однородное линейное дифференциальное уравнение. Алгоритм решения
Поделиться или сохранить к себе: