Набор векторов называется системой векторов .
Система из векторов называется линейно зависимой , если существуют такие числа , не все равные нулю одновременно, что
Система из векторов называется линейно независимой, если равенство (1.1) возможно только при , т.е. когда линейная комбинация в левой части равенства (1.1) тривиальная.
1. Один вектор тоже образует систему: при — линейно зависимую, а при — линейно независимую.
2. Любая часть системы векторов называется подсистемой .
- Свойства линейно зависимых и линейно независимых векторов
- Линейно зависимые и линейно независимые вектора.
- Свойства линейно зависимых векторов:
- Примеры задач на линейную зависимость и линейную независимость векторов:
- Линейно зависимые и линейно независимые функции. Примеры исследования функций на линейную зависимость по определению.
- 🌟 Видео
Видео:Линейная зависимость векторовСкачать
Свойства линейно зависимых и линейно независимых векторов
1. Если в систему векторов входит нулевой вектор, то она линейно зависима
2. Если в системе векторов имеется два равных вектора, то она линейно зависима.
3. Если в системе векторов имеется два пропорциональных вектора , то она линейно зависима.
4. Система из 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC8AAAAQCAMAAACx1dbmAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAiXFYMbEhAcBBoPDQoeAQ0I3cqgAAALZJREFUKM+VktsSwyAIRDWKiFf+/2uLSZvEhkxaXnTGs7KsGvN3UYrwC+ffa3D8zCMlxo+QlyfcNmg7v7A/t7VBux/jzkOe54lJURw8ZrHvop0UdM8P+3axGc89aqQ7XuxbjzybMkEUqPLAIPP6/u0g1OYUHnMpTQs02KLxq/0p0Y1O0al+RvqOCcv51CeZF1UeJBjhacoT6PJehTd9k/R7gdgPul7ei3itcWeYPp/sqv4fRhnzAuOaBpbDogV3AAAAAElFTkSuQmCC» /> векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов есть линейная комбинация остальных.
5. Любые векторы, входящие в линейно независимую систему, образуют линейно независимую подсистему.
6. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.
7. Если система векторов линейно независима, а после присоединения к ней вектора оказывается линейно зависимой, то вектор можно разложить по векторам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно.
Докажем, например, последнее свойство. Так как система векторов — линейно зависима, то существуют числа , не все равные 0, что . В этом равенстве . В самом деле, если , то . Значит, нетривиальная линейная комбинация векторов равна нулевому вектору, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. вектор есть линейная комбинация векторов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ).
Тогда из равенства получаем .
Следовательно, линейная комбинация векторов равна нулевому вектору. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости векторов . Полученное противоречие подтверждает единственность разложения.
Пример 1.3. Параллелограмм построен на векторах и ; точки и — середины сторон и соответственно (рис. 1.11). Требуется:
а) найти линейные комбинации векторов
б) доказать, что векторы , , линейно зависимы.
а) Так как , то по правилу треугольника: .
Рассуждая аналогично, получаем: . Построим вектор . Из равенства треугольников и следует, что . Тогда .
б) Учитывая, что и , получаем: .
Перенося векторы в левую часть, приходим к равенству , т.е. нетривиальная линейная комбинация векторов , , равна нулевому вектору. Следовательно, векторы , , линейно зависимы, что и требовалось доказать.
Видео:Линейная зависимость и линейная независимость векторов.Скачать
Линейно зависимые и линейно независимые вектора.
Определение. Линейной комбинацией векторов a 1, . an с коэффициентами x 1, . xn называется вектор
Видео:Линейная зависимость и линейная независимость. ТемаСкачать
Свойства линейно зависимых векторов:
Видео:Линейная зависимость и независимость систем векторовСкачать
Примеры задач на линейную зависимость и линейную независимость векторов:
Вектора будут линейно зависимыми, так как размерность векторов меньше количества векторов.
Решение: Найдем значения коэффициентов при котором линейная комбинация этих векторов будет равна нулевому вектору.
Это векторное уравнение можно записать в виде системы линейных уравнений
x 1 + x 2 = 0 | |
x 1 + 2 x 2 — x 3 = 0 | |
x 1 + x 3 = 0 |
Решим эту систему используя метод Гаусса
1 1 0 0 1 2 -1 0 1 0 1 0
из второй строки вычтем первую; из третей строки вычтем первую:
1 1 0 0 1 — 1 2 — 1 -1 — 0 0 — 0 1 — 1 0 — 1 1 — 0 0 — 0
1 1 0 0 0 1 -1 0 0 -1 1 0
из первой строки вычтем вторую; к третей строке добавим вторую:
1 — 0 1 — 1 0 — (-1) 0 — 0 0 1 -1 0 0 + 0 -1 + 1 1 + (-1) 0 + 0
1 0 1 0 0 1 -1 0 0 0 0 0
Данное решение показывает, что система имеет множество решений, то есть существует не нулевая комбинация значений чисел x 1, x 2, x 3 таких, что линейная комбинация векторов a , b , c равна нулевому вектору, например:
а это значит вектора a , b , c линейно зависимы.
Ответ: вектора a , b , c линейно зависимы.
Решение: Найдем значения коэффициентов при котором линейная комбинация этих векторов будет равна нулевому вектору.
Это векторное уравнение можно записать в виде системы линейных уравнений
x 1 + x 2 = 0 | |
x 1 + 2 x 2 — x 3 = 0 | |
x 1 + 2 x 3 = 0 |
Решим эту систему используя метод Гаусса
1 1 0 0 1 2 -1 0 1 0 2 0
из второй строки вычтем первую; из третей строки вычтем первую:
1 1 0 0 1 — 1 2 — 1 -1 — 0 0 — 0 1 — 1 0 — 1 2 — 0 0 — 0
1 1 0 0 0 1 -1 0 0 -1 2 0
из первой строки вычтем вторую; к третей строке добавим вторую:
1 — 0 1 — 1 0 — (-1) 0 — 0 0 1 -1 0 0 + 0 -1 + 1 2 + (-1) 0 + 0
1 0 1 0 0 1 -1 0 0 0 1 0
из первой строки вычтем третью; к второй строке добавим третью:
1 — 0 0 — 0 1 — 1 0 — 0 0 + 0 1 + 0 -1 + 1 0 + 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 1 0
Данное решение показывает, что система имеет единственное решение x 1 = 0, x 2 = 0, x 3 = 0, а это значит вектора a , b , c линейно независимые.
Ответ: вектора a , b , c линейно независимые.
Видео:Линейно зависимые векторы: как доказать?Скачать
Линейно зависимые и линейно независимые функции. Примеры исследования функций на линейную зависимость по определению.
Функции $y_1(x),;y_2(x),;y_3(x),ldots,y_n(x)$ называются линейно зависимыми на некотором множестве $T$, если существуют такие константы $alpha_1,;alpha_2,;alpha_3,ldots,alpha_n$, что $forall xin T$ выполняется следующее равенство:
$$ begin alpha_1cdot y_1+alpha_2cdot y_2+ldots+alpha_ncdot y_n=0 end $$
Примечание к терминологии: показатьскрыть
В определении использован термин «равенство», хотя можно было бы воспользоваться термином «тождество». Фразы «для каждого значения переменной $xin T$ выполняется равенство $a(x)=b(x)$» и «на множестве $T$ верно тождество $a(x)equiv b(x)$» равносильны. Например, фраза «равенство $sin^2x=1-cos^2x$ выполнено для $forall xin R$», равносильна такой: «на множестве $R$ верно тождество $sin^2x=1-cos^2x$». Т.е. вместо слов о том, что «$forall xin T$ выполняется следующее равенство: $alpha_1cdot y_1+alpha_2cdot y_2+ldots+alpha_ncdot y_n=0$» можно сказать так: «на множестве $T$ верно тождество $alpha_1cdot y_1+alpha_2cdot y_2+ldots+alpha_ncdot y_nequiv 0$». Некоторые авторы предпочитают использовать именно термин «тождество».
Условие (2) можно изложить и в такой формулировке: среди коэффициентов $alpha_i$ есть хотя бы один, не равный нулю.
Несложно убедиться в равносильности формулировок. Равенство $alpha_^+alpha_^+ldots+alpha_^=0$ возможно в том и только в том случае, когда $alpha_1=alpha_2=ldots=alpha_n=0$. Если же $sum_^alpha_^neq 0$, то равенство $alpha_1=alpha_2=ldots=alpha_n=0$ не выполнено, т.е. хотя бы один из коэффициентов $alpha_i$ отличен от нуля.
Если же равенство (1) возможно лишь при условии:
то функции $y_1(x),;y_2(x),;y_3(x),ldots,y_n(x)$ именуют линейно независимыми на множестве $T$. По сути, условие (3) равносильно такому: все коэффициенты $alpha_i$ равны нулю.
Для двух функций несложно вывести простое правило: если $forall xin T$ $fracneq const$ на некотором интервале $T=(a;b)$, то функции $y_1(x)$ и $y_2 (x)$ линейно независимы на $T$. Если же $forall xin T$ $frac= const$ на $T$, то функции $y_1(x)$ и $y_2 (x)$ линейно зависимы на $T$.
Обоснование этого правила: показатьскрыть
Допустим, что $fracneq const$ на $T$, однако функции $y_1(x)$ и $y_2 (x)$ линейно зависимы. Если функции линейно зависимы, то существуют такие константы $alpha_1$ и $alpha_2$, не равные нулю одновременно, что выполняется равенство: $alpha_1cdot y_1+alpha_2cdot y_2=0$. Пусть, к примеру, $alpha_1neq 0$. Тогда, с учетом $y_2 (x)neq 0$ на $T$, получим: $frac=-frac=const$, что противоречит допущению $fracneq const$.
Если же $frac= const$, то $y_1(x)-Ccdot y_2(x)=0$ на $T$, т.е. $alpha_1=1;;alpha_2=-C$. При этом $alpha_^+alpha_^=1+C^2neq 0$, т.е. функции $y_1(x)$ и $y_2 (x)$ линейно зависимы на $T$.
Все примеры, указанные в этой теме, будут опираться на определения и свойство, приведенные выше. Естественно, что в общем случае применение таких определений несколько затруднительно. Существует несколько критериев, которые позволяют упростить процесс проверки функций на линейную зависимость. На сайте рассмотрены два таких способа: с помощью определителя Вронского и определителя Грама.
Выяснить, являются ли функции $y_1(x)=x^2+2x-4$, $y_2(x)=-4x^2+7x-1$, $y_3(x)=-5x^2+20x-14$ линейно зависимыми или линейно независимыми на множестве $R$.
Рассмотрим линейную комбинацию этих функций: $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3$. Если $forall xin R$ равенство $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3=0$ выполняется только при $alpha_1=alpha_2=alpha_3=0$, то рассматриваемые функции линейно независимы. Если же $forall xin R$ равенство $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3=0$ возможно при условии, что хотя бы один из коэффициентов $alpha_i$ не равен нулю, то функции линейно зависимы.
Подставим в выражение $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3=0$ заданные функции:
Раскроем скобки и перегруппируем слагаемые:
$$ alpha_1cdot x^2+2alpha_1cdot x-4alpha_1-4alpha_2cdot x^2+7alpha_2cdot x-alpha_2-5alpha_3cdot x^2+20alpha_3cdot x-14alpha_3=0; $$ $$(alpha_1-4alpha_2-5alpha_3)cdot x^2+(2alpha_1+7alpha_2+20alpha_3)cdot x+(-4alpha_1-alpha_2-14alpha_3)=0.$$
Последнее равенство возможно лишь в том случае, когда коэффициенты при степенях переменной $x$ одновременно равны нулю, т.е.:
Мы получили однородную систему линейных уравнений. Нам нет необходимости в её решении, нужно лишь установить количество решений. Если решение лишь одно – нулевое (или, в иной терминологии, тривиальное), т.е. $alpha_1=alpha_2=alpha_3=0$, то функции линейно независимы. Если же есть иные решения, кроме нулевого, то функции линейно зависимы. Найдем ранг матрицы системы $A= left( begin 1 & -4& -5\ 2 & 7& 20 \ -4& -1& -14 end right)$ и ранг расширенной матрицы системы: $tilde= left( begin 1 & -4& -5& 0\ 2 & 7& 20 & 0 \ -4& -1& -14 & 0 end right)$, а затем применим теорему Кронекера-Капелли.
Отсюда получаем решение: $left< begin&alpha_1=-3alpha_3;\&alpha_2=-2alpha_3;\&alpha_3=alpha_3;;alpha_3 in R end right.$ Например, подставив $alpha_3=-1$, получим: $alpha_1=3;; alpha_2=2$. Несложно убедиться непосредственной проверкой, что равенство $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3=0$ при найденных коэффициентах будет выполнено $forall xin R$:
$$ 3cdot y_1+2cdot y_2-y_3=3cdot(x^2+2x-4)+2cdot(-4x^2+7x-1)-(-5x^2+20x-14)=0. $$
Итак, существуют такие константы $alpha_1;;alpha_2;;alpha_3$ (например, $alpha_1=3;;alpha_2=2;;alpha_3=-1$), не все одновременно равные нулю, что на $R$ выполняется тождество $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3equiv 0$. Следовательно, рассматриваемые функции линейно зависимы.
Исследовать на линейную зависимость такие функции: $y_1(x)=xln(x+4);;y_2(x)=ln^2(x+4)$.
Исследование проведем в интервале $T=(-4;+infty)$, который представляет собой область определения заданных функций. Применим правило для определения линейной зависимости двух функций, указанное в начале страницы. Так как при $xin(-4;+infty)$ имеем: $frac=fracneq const$, то данные функции линейно независимы на $T=(-4;+infty)$.
Исследовать на линейную зависимость функции: $y_1(x)=1$, $y_2(x)=x$, $y_3(x)=x^2$, $y_4(x)=x^3$, $y_5(x)=x^4$.
Область определения этих функций есть вся числовая прямая, т.е. $x in R$. Рассмотрим равенство:
$$ begin alpha_1cdot 1+alpha_2cdot x+alpha_3cdot x^2+alpha_4cdot x^3+alpha_5cdot x^4=0 end $$
Если равенство (4) для всех $xin R$ возможно лишь при условии $alpha_1=alpha_2=alpha_3=alpha_4=alpha_5=0$, то заданные функции линейно независимы. Если же равенство (4) $forall xin R$ выполняется на наборе констант $alpha_1$, $alpha_2$, $alpha_3$, $alpha_4$, $alpha_5$, среди которых хотя бы одна отлична от нуля, то заданные функции линейно зависимы. Итак, нужно исследовать равенство (4).
В левой части равенства (4) расположен многочлен, порядок (или, в иной терминологии, степень) которого не превышает $4$. Например, если $alpha_1=2; ;alpha_2=0;;alpha_3=0;;alpha_4=7;;alpha_5=0$, то получим многочлен третьего порядка:
$$alpha_1cdot 1+alpha_2cdot x+alpha_3cdot x^2+alpha_4cdot x^3+alpha_5cdot x^4=7x^3+2.$$
Т.е. в левой части равенства (4) может быть многочлен четвертого, третьего, второго, первого и нулевого порядков.
Рассмотрим случай, когда в левой части равенства (4) расположен многочлен, порядок которого не равен нулю (среди констант $alpha_2;;alpha_3;;alpha_4;;alpha_5$ хотя бы одна не равна нулю). Любой многочлен первого порядка может обратиться в ноль только в одной точке (т.е. существует только одно значение $x$, при котором многочлен первого порядка равен нулю). Многочлен второго порядка равен нулю не более, чем в двух точках; многочлен третьего порядка – не более, чем в трёх точках; многочлен четвертого порядка обращается в ноль не более, чем в четырёх точках. Т.е. если среди констант $alpha_2;;alpha_3;;alpha_4;;alpha_5$ есть хотя бы одна, отличная от нуля, то равенство (4) может быть выполнено не более, чем при четырёх значениях $x$ (а не для всех $xin R$).
Рассмотрим ситуацию, когда среди констант $alpha_2;;alpha_3;;alpha_4;;alpha_5$ нет ни одной, отличной от нуля, т.е. $alpha_2=alpha_3=alpha_4=alpha_5=0$. В этом случае в левой части равенства (4) получим многочлен нулевого порядка:
$$alpha_1cdot 1+alpha_2cdot x+alpha_3cdot x^2+alpha_4cdot x^3+alpha_5cdot x^4=alpha_1$$
А само равенство (4) станет таким: $alpha_1=0$. Следовательно, для многочлена нулевого порядка выполнение равенства (4) возможно лишь при $alpha_1=alpha_2=alpha_3=alpha_4=alpha_5=0$.
Подведём итоги: если в правой части равенства (4) стоит многочлен ненулевого порядка, то равенство (4) не может быть выполнено при всех $xin R$. Равенство (4) может быть выполнено для всех $xin R$ только когда в правой части стоит многочлен нулевого порядка, однако это означает $alpha_1=alpha_2=alpha_3=alpha_4=alpha_5=0$. Так как равенство (4) выполняется для всех $xin R$ только при условии $alpha_1=alpha_2=alpha_3=alpha_4=alpha_5=0$, то заданные функции линейно независимы на $R$.
Исследовать на линейную зависимость функции: $y_1(x)=4$, $y_2(x)=arcsin$, $y_3(x)=arccos$ на отрезке $[-1;1]$.
Так как $arcsin x+arccos x=frac ; forall x in [-1;1]$ то:
$$arcsin x+arccos x=fraccdot4; ; arcsin x+arccos x-fraccdot4=0; ; 1cdot y_1+1cdot y_2+left(-fracright)cdot y_3=0$$
Итак, существует такой набор констант $alpha_1; ; alpha_2;; alpha_3$ (например, $alpha_1=1;; alpha_2=1;; alpha_3=-frac$), среди которых есть хотя бы одна константа, отличная от нуля, что равенство $alpha_1cdot y_1+alpha_2cdot y_2+alpha_3cdot y_3=0$ будет выполнено для всех $xin[-1;1]$. Это означает, что функции $y_1(x)=4$, $y_2(x)=arcsin$, $y_3(x)=arccos$ линейно зависимы на отрезке $[-1;1]$.
Исследовать на линейную зависимость функции: $y_1(x)=x;; y_2(x)=|x|$ в их области определения.
Областью определения заданных функций есть все множество действительных чисел, т.е. $xin R$. Функции будут линейно зависимыми, если существует такой набор констант $alpha_1$ и $alpha_2$, что для всех значений $xin R$ выполнено равенство $alpha_1cdot y_1+alpha_2cdot y_2=0$ (т.е. $alpha_1cdot x+alpha_2cdot |x|=0$), причем хотя бы один из коэффициентов ($alpha_1$ или $alpha_2$) не равен нулю. Если же выполнение равенства $alpha_1cdot y_1+alpha_2cdot y_2=0$ при $forall xin R$ возможно лишь при $alpha_1=alpha_2=0$, то заданные функции будут линейно независимыми. Рассмотрим равенство $alpha_1cdot x+alpha_2cdot |x|=0$ подробнее.
Если $x≥ 0$, то $|x|=x$, поэтому равенство $alpha_1cdot x+alpha_2cdot |x|=0$ станет таким: $alpha_1cdot x+alpha_2cdot x=0$, $xcdot(alpha_1+alpha_2)=0$. Равенство $xcdot(alpha_1+alpha_2)=0$ должно быть выполнено при всех $x≥ 0$, поэтому $alpha_1+alpha_2=0$.
Итак, чтобы равенство $alpha_1cdot x+alpha_2cdot |x|=0$ было верным для всех $xin R$, требуется выполнение двух условий:
Полученная система имеет лишь тривиальное (нулевое) решение: $alpha_1=alpha_2=0$. Итак, выполнение равенства $alpha_1cdot x+alpha_2cdot |x|=0$ при $forall xin R$ возможно лишь в случае $alpha_1=alpha_2=0$, поэтому функции линейно независимы на R.
Исследование на линейную зависимость с помощью определителей Вронского и Грама указаны в дальнейших темах сайта.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
🌟 Видео
Линейная зависимость строк и определитель матрицыСкачать
Линейная комбинация. Линейная зависимость (независимость) матриц.Скачать
Линейная зависимость векторов. РангСкачать
Примеры линейной зависимости векторов.Скачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Практика 10 Линейная зависимость функцийСкачать
Линейная зависимость векторов на примерахСкачать
Овчинников А. В. - Аналитическая геометрия - Линейно зависимые и линейно независимые векторыСкачать
Высшая математика. Линейные пространства. Векторы. БазисСкачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Линейная алгебра, 6 урок, Ранг матрицыСкачать
Линейная зависимость и линейная независимость строк столбцов матрицы. Часть 1.Скачать
Линейная зависимость векторов. Линейная алгебра. Лекция 2Скачать
§44 Линейная независимость векторовСкачать
Линейная зависимость и независимость векторов. Базис.Скачать