Линейная алгебра решение линейных уравнений примеры

Примеры решений по линейной алгебре

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейная алгебра для чайников

В этом разделе вы найдете бесплатные примеры по линейной алгебре (линалу): по основным темам, которые студенты изучают на 1 курсе:

матрицы и векторы, их характеристики, линейные пространства и подпространства и нахождение базиса, системы линейных уравнений, линейные отображения и операторы, квадратичные формы.

Не складывается с решением задач? Поможем подробно и быстро. После консультации вы сможете выполнить и оформить задачи в Word, с формулами, чертежами и пояснениями. Узнайте подробнее о решении алгебры для студентов.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение простых линейных уравнений

Линейная алгебра решение линейных уравнений примеры

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Линейная алгебра решение линейных уравнений примеры

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Линейная алгебра решение линейных уравнений примеры

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Линейная алгебра решение линейных уравнений примеры

  1. Линейная алгебра решение линейных уравнений примеры
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Линейная алгебра — примеры с решением заданий и выполнением задач

Содержание:

Видео:Линейная алгебра: матрицы, определители, метод Крамера. Высшая математикаСкачать

Линейная алгебра: матрицы, определители, метод Крамера. Высшая математика

Линейная алгебра

Линейная алгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры.

Матрицы и операции над ними

В математике и ее приложениях наряду с числами часто бывает удобным использовать чис­ловые таблицы, которые называются матрицами. Аппарат теории матриц эффективно приме­няется, например, при решении систем линейных уравнений, как мы скоро в этом убедимся. Перейдем к точным определениям.

Определение: Матрицей размерности m х n называется прямоугольная таблица дейст­вительных чисел, состоящая из m строк и n столбцов.

Числа, составляющие матрицу, называются ее элементами. Для доступа к элементам мат­рицы используются два индекса: первый указывает на номер строки, второй — на номер столб­ца, на пересечении которых расположен данный элемент.

Обозначаются матрицы, как правило, прописными латинскими буквами A, B, C,иногда указывается размерность, например, Amxn. В развернутой форме матрица записывается как таблица:

Линейная алгебра решение линейных уравнений примеры

Более компактно с указанием элементов матрица записывается в виде: Линейная алгебра решение линейных уравнений примеры

Матрицы А и В одинаковой размерности считаются равными, если все элементы одной матрицы равны соответвующим элементам другой матрицы.

Рассмотрим некоторые специальные виды матриц.

Матрица, у которой все элементы равны нулю, называется нуль-матрицей и обозначается через O.

Матрица, у которой число строк равно числу столбцов, называется квадратной. Размерность квадратной матрицы часто называют ее порядком.

Числа Линейная алгебра решение линейных уравнений примерыв квадратной матрице Линейная алгебра решение линейных уравнений примерыназываются диагональными элементами. Совокупность диагональных элементов составляет главную диагональ квадрат­ной матрицы.

Квадратная матрица, диагональные элементы которой равны единице, а все остальные — нулю, называется единичной матрицей и обозначается через Линейная алгебра решение линейных уравнений примерыгде n — порядок матрицы.

Линейная алгебра решение линейных уравнений примеры

Квадратная матрица называется треугольной, если все ее элементы, расположенные ниже (выше) главной диагонали, равны нулю. Например, треугольной является матрица

Линейная алгебра решение линейных уравнений примеры

Матрица называется трапециевидной, если она представляет собой следующую таблицу:

Линейная алгебра решение линейных уравнений примеры

Операции над матрицами

Введем сначала линейные операции над матрицами.

Произведением действительного числа Линейная алгебра решение линейных уравнений примерына матрицу Линейная алгебра решение линейных уравнений примерыназывается матрица

Линейная алгебра решение линейных уравнений примеры

Суммой двух матриц Линейная алгебра решение линейных уравнений примерыодинаковой размерности называется матрица

Линейная алгебра решение линейных уравнений примеры

Таким образом, элементы суммы матриц равны суммам соответствующих элементов данных матриц.

Разность матриц А и B можно определить как А — В = А + (-1)В.

Свойства линейных операций над матрицами аналогичны соответствующим свойствам действительных чисел.

Пример №1

Линейная алгебра решение линейных уравнений примеры

Найти матрицу -2А +3В.

Линейная алгебра решение линейных уравнений примеры

Линейная алгебра решение линейных уравнений примеры

Определим теперь операцию умножения матриц. Рассмотрим сначала матрицу-строку и матрицу-столбец с одинаковым числом элементов, т.е.

Линейная алгебра решение линейных уравнений примеры

Произведением этих строки и столбца называется число1

Линейная алгебра решение линейных уравнений примеры

Рассмотрим так называемые согласованные матрицы Линейная алгебра решение линейных уравнений примеры, у первой из которых число столбцов равно числу строк второй матрицы. Обозначим строку с номером i матрицы А через Линейная алгебра решение линейных уравнений примерыа столбец с номером j матрицы B через Линейная алгебра решение линейных уравнений примеры

Произведением данных согласованных матриц А и B называется матрица

Линейная алгебра решение линейных уравнений примеры

Часто для суммы n чисел Линейная алгебра решение линейных уравнений примерымы будем использовать короткое обо значение Линейная алгебра решение линейных уравнений примеры

размерности m х p, элементы которой равны произведениям строк матрицы A на столбцы B.

Пример №2

Найти произведение согласованных матриц

Линейная алгебра решение линейных уравнений примеры

Решение. Найдем произведение строк матрицы А на столбцы матрицы В.

Линейная алгебра решение линейных уравнений примеры

Осталось записать искомое произведение матриц:

Линейная алгебра решение линейных уравнений примеры

Отметим некоторые свойства произведения матриц1. Линейная алгебра решение линейных уравнений примеры

Первые три сразу следуют из определения произведения матриц. Докажем последнее свой­ство. Пусть заданы три матрицы Линейная алгебра решение линейных уравнений примерыЭлемент dij произ­ведения (AB)C равен произведению строки с номером i матрицы AB на столбец с номером j матрицы C : Линейная алгебра решение линейных уравнений примерыПоменяв порядок суммирования в последней двойной сумме, получим:

Линейная алгебра решение линейных уравнений примеры

что представляет собой произведение Тем строки с номером i матрицы A на столбец с номером j матрицы ВС. Тем самым свойство 4 доказано.

Заметим, что в отличие от чисел матрицы, вообще говоря, не коммутируют (не переста­новочны). Приведем соответствующий

Контрпример. Доказать, что матрицы

Линейная алгебра решение линейных уравнений примеры

Линейная алгебра решение линейных уравнений примеры

Таким образом, для этих матриц Линейная алгебра решение линейных уравнений примеры

Замечание. Пользуясь случаем, введем здесь определение n-мерного векторного пространства Rn, как множество упорядоченных совокупностей n действительных чисел. Каждую такую совокупность мы будем обозначать через и называть n-мерным вектором.

Мы предполагаем, что все матрицы в свойствах согласованы.

Линейная алгебра решение линейных уравнений примеры

Очевидно, каждый вектор мы можем отождествить с соответствующей матрицей-строкой или матрицей-столбцом, поэтому на векторы автоматически переносятся линейные операции, которые мы определили выше для матриц.

Определитель матрицы и его свойства

Познакомимся теперь с такой важнейшей характеристикой матрицы, как определитель. Вве­дем предварительно понятие перестановки и изучим некоторые ее свойства.

Перестановки

Перестановкой n натуральных чисел 1, 2, . n называется строка

Линейная алгебра решение линейных уравнений примеры(1)

содержащая все эти числа.

Первым элементом перестановки может быть любое из чисел 1, 2, . n, вторым — любое из оставшихся n — 1 чисел и так далее, следовательно, число различных перестановок данных чисел равно Линейная алгебра решение линейных уравнений примеры(читается n-факториал).

Два числа в перестановке находятся в инверсии, если большее из них имеет меньший номер. Число всех инверсий в перестановке (1) мы обозначим через Линейная алгебра решение линейных уравнений примеры

В связи с этим перестановка (1) называется четной, если в ней число Линейная алгебра решение линейных уравнений примерычетно и нечетной — в противном случае.

Отметим два свойства перестановок, которые мы будем использовать ниже.

Лемма 1. Характер четности перестановки изменится на противоположный, если в ней поменять местами какие-нибудь два элемента.

Доказательство. Предположим сначала, что меняются местами рядом стоящие элементы к и l перестановки. В этом случае число инверсий в новой перестановке изменится на единицу, а именно, увеличится на единицу, если к и l не находились в инверсии, или на­столько же уменьшится, если они находились в инверсии. Таким образом, характер четности перестановки изменится на противоположный. Рассмотрим теперь случай, когда числа к и l разделяют s других элементов перестановки. Тогда поменять местами данные элементы мы можем последовательно переставляя число к с s промежуточными элементами, а затем пере­ставляя число l в обратном порядке с элементом к и всеми s промежуточными. В результате мы выполним 2s + 1 обменов рядом стоящих элементов и, таким образом, характер четно­сти исходной перестановки изменится нечетное число раз и, следовательно, он изменится на противоположный. Лемма доказана.

Из этой леммы сразу же следует, что количество четных перестановок равно количеству нечетных. В самом деле, поменяв местами любые два элемента в каждой из p четных переста­новок, мы получим p нечетных и, следовательно, Линейная алгебра решение линейных уравнений примерыгде q — количество нечетных перестано­вок. Аналогично мы можем убедиться в справедливости неравенства Линейная алгебра решение линейных уравнений примерыИз этих неравенств и следует, что p = q.

Лемма 2. Пусть

Линейная алгебра решение линейных уравнений примеры(2)

— перестановка чисел 1, 2, . n — 1. Зафиксируем число j из множества и оставим его перестановку (2) на место с номером i, сдвинув вправо на одну позицию все ее элементы с номерами i, i + 1, . , n — 1 и увеличив на единицу все не меньшие, чем j элемен­ты этой перестановки. В результате получим перестановку

Линейная алгебра решение линейных уравнений примеры(3)

чисел 1, 2, . , n. Четности перестановок (2) и (3) связаны равенством

Линейная алгебра решение линейных уравнений примеры

Действительно, предположим сначало, что элемент j в перестановке (3) стоит на первом месте. Тогда, очевидно, количество инверсий в этой перестановке равно Линейная алгебра решение линейных уравнений примерыПерегоним теперь число j на место с номером i, последовательно обменивая его со следующими i — 1 элементами. По лемме 1 характер четности перестановки изменится i — 1 ра и, значит,

Линейная алгебра решение линейных уравнений примеры

Определитель и его вычисление для матриц второго и третьего порядков

Рассмотрим квадратную матрицу порядка n :

Линейная алгебра решение линейных уравнений примеры

Составим произведение элементов данной матрицы, взятых по одному из каждой строки и каждого столбца. Упорядочив элементы этого произведения по возрастанию номеров строк, мы можем записать его в виде:

Линейная алгебра решение линейных уравнений примеры

Номера столбцов в записанном произведении образуют перестановку чисел 1, 2, . , n.

Определение: Число, равное сумме всех n! произведений

Линейная алгебра решение линейных уравнений примеры

называется определителем данной квадратной матрицы А (определителем n-го порядка) и обозначается через |А| или det А. В развернутой форме определитель записывается как

Линейная алгебра решение линейных уравнений примеры

Найдем пользуясь этим определением выражение для определителей второго и третьего порядков.

Так как Линейная алгебра решение линейных уравнений примерыто

Линейная алгебра решение линейных уравнений примеры

Аналогично, для вычисления определителя третьего порядка найдем число инверсий в каждой из перестановок чисел 1, 2, 3 :

Линейная алгебра решение линейных уравнений примеры

ТогдаЛинейная алгебра решение линейных уравнений примеры

Для упрощения вычисления определителя третьего порядка можно использовать правило треугольников, согласно которому со знаком » + » следует брать произведения по схеме

Линейная алгебра решение линейных уравнений примеры

а со знаком » — » — по схеме

Линейная алгебра решение линейных уравнений примеры

Пример №3

Линейная алгебра решение линейных уравнений примеры

Решение. Воспользуемся правилом треугольников: Линейная алгебра решение линейных уравнений примеры= —2 + 6 — 6 — 9 — 8 — 1 = -20.

Свойства определителя

1) Если какая-либо строка (столбец) определителя состоит из нулей, то и определитель равен нулю.

2) Общий множитель элементов какой-либо строки (столбца) можно выносить за знак определителя.

3) Если все элементы какой-нибудь строки (столбца) определителя равны суммам двух слагаемых, то данный определитель равен сумме двух определителей, в которых в указан­ной строке (столбце) стоят, соответственно, первые и вторые слагаемые, а остальные элементы обоих определителей такие же, как и в исходном определителе.

Эти свойства напрямую следуют из определения определителя.

4) Если переставить две какие-нибудь строки (столбца) определителя, то он поменяет знак на противоположный.

Действительно, переставим, например, две строки определителя. В результате получим определитель, каждое слагаемое которого отличается знаком от соответствующего слагаемого исходного определителя, так как по доказанной в пункте 1 лемме 1 четность соответствующей перестановки вторых индексов изменится па противоположную.

5) Если в определителе совпадают (пропорциональны) две какие-нибудь строки (столбцы), то этот определитель равен нулю.

В самом деле, если в определителе совпадают две каие-нибудь строки (столбцы), то, с одной стороны, определитель при этом не изменится, а, с другой стороны, по предыдущему свойству его знак поменяется на противоположный. Таким образом |A| = — |A| и, стало быть, |A| = 0. Если же в определителе имеются две пропорциональные строки (столбца), то после вынесе­ния за его знак по свойству 2) общего множителя элементов строки (столбца), мы получим определитель с двумя одинаковыми строками (столбцами), который равен нулю.

6) Определитель не изменится, если к элементам какой-нибудь строки (столбца) доба­вить соответствующие элементы другой строки (столбца), умноженные на одно и тоже число.

Это следует из свойств 3) и 5), так как в этом случае полученный определитель можно представить в виде суммы двух определителей, один из которых равен исходному, а в другом имеются пропорциональные строки (столбцы), и поэтому он равен пулю.

Прежде чем сформулировать очередное свойство, введем понятие алгебраического дополне­ния к элементу матрицы.

Алгеброическим дополнением элемента aij квадратной матрицы A = (aij)nxn мы будем называть число

Линейная алгебра решение линейных уравнений примеры

где Линейная алгебра решение линейных уравнений примеры— определитель порядка n — 1, полученный из определителя этой матрицы вычеркиванием i-ой строки и j-го столбца.

7) Разложение определителя по элементам строки (столбца).

Определитель матрицы равен сумме произведений элементов какой-нибудь строки (столб­ца) на соответствующие алгебраические дополнения. Таким образом,

Линейная алгебра решение линейных уравнений примеры

Линейная алгебра решение линейных уравнений примеры

Докажем, например, первую из этих формул. Убедимся в том, что правая часть данной формулы содержит все слагаемые определителя матрицы А. Выражение

Линейная алгебра решение линейных уравнений примеры

содержит n(n — 1)! = n! различных произведений элементов определи теля матрицы A, взятых по одному из каждой строки и каждого столбца. Осталось проверить соответствие знаков.

Рассмотрим произвольное произведение

Линейная алгебра решение линейных уравнений примеры

Каждое слагаемое определителя Линейная алгебра решение линейных уравнений примерыпредставляет собой произведение элементов данной мат­рицы, взятых по одному из каждой строки и каждого столбца, исключая строку с номером i и столбец с номером j. Знак этого произведения определяется четностью перестановки

Линейная алгебра решение линейных уравнений примеры

чисел 1, 2, . , n — 1. Умножив данное произведение на число Линейная алгебра решение линейных уравнений примерыи поставив множитель Линейная алгебра решение линейных уравнений примерына место с номером i, мы получим соответствующее произведение определителя матрицы А с перестановкой вторых индексов Линейная алгебра решение линейных уравнений примерыи знаком Линейная алгебра решение линейных уравнений примерыкоторый по лемме 2 пункта 1 соответствует четности перестановки Линейная алгебра решение линейных уравнений примеры

Таким образом, вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка.

Пример №4

Линейная алгебра решение линейных уравнений примеры

Решение. Разложим этот определитель по элементам второй строки:

Линейная алгебра решение линейных уравнений примеры

Пример №5

Вычислить определитель треугольной матрицы

Линейная алгебра решение линейных уравнений примеры

Разлагая этот и следующие определители по первому столбцу, получим:

Линейная алгебра решение линейных уравнений примеры

таким образом, определитель треугольной матрицы равен произведению диагональных эле­ментов.

8) Сумма произведений n действительных чисел на алгебраические дополнения к элементам какой-нибудь строки (столбца) равна определителю, в котором в указанной строке (столбце) расположены данные числа, а все остальные элементы совпадают с соответствующими элементами исходного определителя.

Это свойство является прямым следствием предыдущего.

9) Сумма произведений элементов какой-нибудь строки (столбца) на алгебраические до­полнения к элементам какой-нибудь другой строки (столбца) определителя равна нулю.

Действительно, по предыдущему свойству эта сумма произведений равна определителю с двумя совпадающими строками (столбцами), а такой определитель по свойству 5) равен нулю.

10) Определитель произведения матриц равен произведению определителей этих матриц, т. е.

Линейная алгебра решение линейных уравнений примеры

Достаточно громоздкое доказательство этого свойства мы приводить не будем.

Обратная матрица

Определение: Обратной к квадратной матрице Линейная алгебра решение линейных уравнений примерыназывается обозначаемая через А-1 матрицы, для которой АА-1 = А-1А = Е, где Е — единичная матрица.

Из этого определения следует, что матрица А-1 также является квадратной той же размер­ности, что и матрица А.

Отметим некоторые свойства обратной матрицы, следующие из ее определения.

а) У матрицы не может существовать больше одной обратной.

Действительно, пусть для матрицы А имеются две обратные Линейная алгебра решение линейных уравнений примерыТогда

Линейная алгебра решение линейных уравнений примеры

Умножив обе части первого равенства слева на матрицу Линейная алгебра решение линейных уравнений примерыполучим Линейная алгебра решение линейных уравнений примеры

c) Если для квадратных матриц А и В одного порядка существуют обратные, то и у матрицы АВ также существует обратная , причем

Линейная алгебра решение линейных уравнений примеры

Выясним условия, при которых обратная матрица существует.

Теорема (критерий существования обратной матрицы). Для того, чтобы существовала матрица, обратная данной, необходимо и достаточно, чтобы данная матрица была невырожденной, то есть чтобы ее определитель был не равен нулю.

Доказательство. Докажем сначала необходимость условия теоремы. Пусть для матрицы А существует обратная матрица. Тогда из равенства АА-1 = E, воспользовавшись свойством 10) определителя произведения матриц, получаем: det(AA-1) = det А Линейная алгебра решение линейных уравнений примерыdet А-1 = det E = 1. Следователь но, det А Линейная алгебра решение линейных уравнений примеры0.

Убедимся теперь в том, что условие теоремы является и достаточным. Предположим, что матрица А является невырожденной. Проверим, что обратной к данной является матрица со следующей структурой 1:

Линейная алгебра решение линейных уравнений примеры

Действительно, если Линейная алгебра решение линейных уравнений примеры

Линейная алгебра решение линейных уравнений примеры

откуда, воспользовавшись свойствами 7) и 9) определителя (§2, пункт 3), заключаем:

Линейная алгебра решение линейных уравнений примеры

т. е. АА-1 = Е. Аналогично убеждаем, что А-1А = Е. Теорема доказана.

В строках указанной ниже матрицы записаны алгебраические дополнения к элементам соответствующих столбцов.

Пример №6

Найти обратную к матрице

Линейная алгебра решение линейных уравнений примеры

Решение. Найдем сначала определитель матрицы: Линейная алгебра решение линейных уравнений примерыОбратная матрица существует. Находим алгебраические дополнения к элементам данной матрицы:

Линейная алгебра решение линейных уравнений примерыСледовательно,

Линейная алгебра решение линейных уравнений примеры

Обратную матрицу можно использовать при решении линейных матричных уравнений. Пусть, например, требуется решить матричное уравнение

с известными матрицами А и B, причем матрица A является невырожденной. Умножая обе части данного матричного уравнения слева на обратную матрицу A-1, получим:Линейная алгебра решение линейных уравнений примеры

Аналогично, решением матричного уравнения XA = B является матрица X = BA-1, а ре­шением матричного уравнения AXB = С с невырожденными матрицами A и B является матрица X = A-1CB-1.

Ранг матрицы и его вычисление

Рассмотрим произвольную матрицу Линейная алгебра решение линейных уравнений примеры

Минором порядка k матрицы A называется определитель, стоящий на пересечении выбран­ных k строк и k столбцов данной матрицы.

Определение: Рангом матрицы А называется максимальный из порядков ненулевых миноров этой матрицы. Обозначается ранг через rang A.

Естественно считать, что rang O = 0. Очевидно также, что Линейная алгебра решение линейных уравнений примеры

Пример №7

Найти ранг матрицы

Линейная алгебра решение линейных уравнений примеры

Решение. Вычислим минор, находящийся на пересечении первых двух строк и первого и четвертого столбцов:

Линейная алгебра решение линейных уравнений примеры

Все же миноры третьего порядка этой матрицы равны нулю, так как третья строка равна разности второй и первой строк. Следовательно, rang A = 2.

Как видно из определения, вычисление ранга матрицы через миноры является весьма тру­доемкой задачей, особенно для матриц большой размерности. Значительно сократить объем вычислений позволяет другой метод, основанный на элементарных преобразованиях матрицы.

Элементарными преобразованиями матрицы называются следующие операции над ее стро­ками или столбцами:

  1. перестановка двух строк (столбцов) матрицы;
  2. умножение строки (столбца) на ненулевое действительное число;
  3. добавление к строке (столбцу) другой строки (столбца), умноженной на действительное число.

Тот факт, что матрица В получена из матрицы А с помощью одного или нескольких последовательно выполненных элементарных преобразований, мы будем обе тачать как Линейная алгебра решение линейных уравнений примеры

Теорема. Ранг матрицы не меняется при ее элементарных преобразованиях.

Доказательство этого утверждения для первого и второго элементарных преобразований следует из того, что по свойствам 2) и 4) определителя (§2, пункт 3) миноры исходной матрицы могут отличаться от миноров преобразованной разве лишь знаком или ненулевым множителем, что. естественно, не отражается на ранге матрицы. Пусть теперь матрица А’ получена из матрицы А с помощью третьего элементарного преобразования, для определенности будем считать, что к строке с номером i добавлена строка с номером j, умноженная на действительное число Линейная алгебра решение линейных уравнений примерыВозьмем в матрице А’ минор М порядка Линейная алгебра решение линейных уравнений примеры(если такого минора нет, то rang Линейная алгебра решение линейных уравнений примеры). Этот минор либо совпадает с минором матрицы A, либо по свойствам 3). 2). 4) определителя он равен сумме двух миноров матрицы А с действительными коэффициентами, один из которых равен 1. а второй Линейная алгебра решение линейных уравнений примерыВ обоих случаях по определению ранга матрицы минор М равен 0. Следовательно, rang А’ n.

Следствие: Для того чтобы однородная система n уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы ее основной определитель был равен нулю.

Доказательство:

    Достаточность: Линейная алгебра решение линейных уравнений примерысистема имеет нетривиальное решение. Так как единственный минор n -го порядка равен нулю, то r

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🌟 Видео

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | ИнфоурокСкачать

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | Инфоурок

Линейная алгебра для начинающих с примерами. Лекция преподавателя МГУСкачать

Линейная алгебра для начинающих с примерами. Лекция преподавателя МГУ

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной
Поделиться или сохранить к себе: