Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

2.3. Типовые задачи

В разделе 1 было получено уравнение плоскости проходящей через точку М0(x0,y0,z0) и с вектором нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, где A2+B2+C2>0:

A(x – x0) + B(y – y0) + C(z – z0)=0. (*)

Рассмотрим теперь другие способы задания плоскости в пространстве.

Задача 1. Написать уравнение плоскости π, проходящей через три заданные точки М1(x1,y1,z1), М2(x2,y2,z2) и М3(x3,y3,z3) (рис. 5).

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Решение: Чтобы написать уравнение искомой плоскости, достаточно знать координаты какой-либо точки на плоскости и координаты вектора нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости(уравнение (*). Точкой на плоскости может быть любая из заданных точек М1, М2 или М3, а вектором нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиможет быть векторное произведение векторов [Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости].

Поставленную задачу можно решить другим способом. Пусть М(x, y,z) — текущая точка на плоскости π. Тогда векторы Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(x-x1,y-y1,z-z1), Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(x2-x1,y2-y1,z2-z1) и Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(x3-x1,y3-y1,z3-z1) лежат на плоскости π (компланарны). Условие компланарности этих векторов (равенство нулю их смешанного произведения) задает уравнение искомой плоскости π:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости. (21)

Пример. Написать уравнение плоскости, проходящей через точки М1(1,1,1), М2(3,2,-1) и М3(4,1,0).

Для решения задачи воспользуемся вторым способом. Уравнение плоскости запишем в виде (21)

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Разложив определитель по первой строке, получим

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиИли

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости– уравнение искомой плоскости с Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Заметим, что векторное произведение векторов Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(2,1,–2) и Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(3,0,–1) коллинеарно вектору нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Задача 2. Написать уравнение плоскости π, проходящей через точку М0(x0,y0,z0) и прямую L (рис. 6): Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, если точка M0 не лежит на прямой L (иначе плоскость однозначно не определена). Точка М1(x1,y1,z1) принадлежит L, вектор Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости– направляющий вектор.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Решение: Заданной точкой в уравнении (*) может быть любая из точек М1 или М0. Вектором нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиможет служить векторное произведение векторов Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостии Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(A, B,C).

Задача 3. Написать уравнение плоскости, проходящей через две параллельные прямые.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостии Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Т. M1 (x1,y1,z1)Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,

Т. M2 (x2,y2,z2) Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,

Вектор Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости– направляющий вектор прямых L1,L2 (рис. 7).

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Вновь используем уравнение (*).

Точка на плоскости – любая из точек М1 или М2; вектором нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(A, B,C) может быть векторное произведение [Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости].

Задача 4. Доказать, что две прямые L1, L2 лежат в одной плоскости (пересекаются) и составить уравнение этой плоскости.

Решение задачи рассмотрим на примере.

Пусть Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостии Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

1. Проверим, лежат ли прямые L1 и L2 в одной плоскости. Для этого убедимся, что векторы Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостии Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостикомпланарны.

Запишем параметрически заданную прямую L2 в каноническом виде

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,

здесь М2(7,2,1) – точка на прямой L2, Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости– ее направляющий вектор.

На прямой L1: М1(1,-2,5); Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости. Вектор Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(6,4,–4) (рис. 8).

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Условием компланарности является равенство нулю смешанного произведения

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,

Т. к. в полученном определителе две строки совпадают (при вычислении определителя общие множители первой строки и последнего столбца вынесены за знак определителя).

Итак, мы убедились, что прямые L1 и L2 пересекаются.

Точка плоскости π – любая из точек М1, М2 (возьмем, например, точку М1(1,–2,5)).

Вектор нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(А, B,C)= [Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости]=Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости= – 2Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости+16Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости+13Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Уравнение искомой плоскости π:

– 2(x – 1) + 16(y + 2) + 13(z – 5) = 0, или

2x – 16y – 13z + 31 = 0.

Задача 5. Определить взаимное расположение прямой L, заданной как пересечение двух непараллельных плоскостей:

L:Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

И плоскости π: A3x+B3y+C3z+D3=0.

Решение: Возможны следующие случаи:

А) прямая L и плоскость π не пересекаются (прямая параллельна плоскости и не имеет общих точек с плоскостью);

Б) прямая L пересекается с плоскостью в единственной точке;

В) прямая L лежит в плоскости – бесчисленное множество общих точек.

Эти задачи фактически были рассмотрены в разделе 2, когда прямая задавалась параметрическими или каноническими уравнениями.

Вообще говоря, нет надобности переходить от общего уравнения прямой к каноническому. Алгебраически задача сводится к исследованию и решению (если это возможно) системы уравнений

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости. (22)

Решение этой системы определяет координаты общих точек прямой и плоскости.

Воспользуемся методом Крамера. Обозначим определитель системы (22)

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

А определитель Δ1, Δ2, Δ3, полученные из Δ с помощью столбца свободных членов, соответственно:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

Если определитель Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, то система (22) имеет единственное решение, и оно определяется по формулам Крамера:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,

Имеет место случай (б).

Если определитель Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, а хотя бы один из определителей Δ1, Δ2 или Δ3 отличен от нуля, система (22) не имеет решения (не совместна). Геометрически это означает, что прямая и плоскость не имеют общих точек (параллельны) – случай (а).

Если же все определители Δ =Δ1=Δ2=Δ3=0, то система (22) имеет бесчисленное множество решений. Прямая L целиком лежит на плоскости π (случай в)).

Задача 6. Определить точку Q, симметричную точке M0(x0,y0,z0), относительно плоскости

Решение. Запишем алгоритм решения задачи.

1. Составим уравнение прямой L, проходящей через точку M0(x0,y0,z0) и перпендикулярной плоскости π. Направляющим вектором Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиэтой прямой послужит вектор нормали Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

2. Найдём точку пересечения M1(x1,y1,z1) прямой L и плоскости π (см. раздел 2).

3. Точка M1 является серединой отрезка M0Q, и координаты точек M0, M1 и Q связаны формулами: x1=Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,y1=Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости,z1=Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости, откуда найдем координаты точки Q(x0,y0,z0)
(рис. 9):

XQ=2×1 – x0, yQ=2y1 – y0, zQ=2z1 – z0.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Аналогично решается и следующая задача.

Задача 7. Найти точку Q, симметричную точке M0(x0,y0,z0) относительно прямой

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости.

1. Составим уравнение плоскости, проходящей через точку M0(x0,y0,z0) перпендикулярно прямой L. Вектором нормали к этой плоскости Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости(A, B,C) возьмем направляющий вектор Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости=(l, m,n) прямой L.

π: l(x – x0) + m(y – y0) + n(z – z0)=0.

2. Найдем точку пересечения M1(x1,y1,z1) прямой L и плоскости π (см. раздел 2).

3. Точка M1 – середина отрезка M0Q, координаты точки Q определяются так же, как и в задаче 6.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Уравнение плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Доказать, что точки лежат в одной плоскости - bezbotvyСкачать

Доказать, что точки лежат в одной плоскости - bezbotvy

Уравнение плоскости, проходящей через три точки

Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостии Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостине коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостикомпланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:

Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости(1)

Подставляя координаты точек A, B, C в (1), получим:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости
Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Разложим определитель по первому столбцу:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиЛежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиЛежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости
Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскостиЛежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости
Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Видео:17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать

17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположены

Уравнение плоскости, проходящей через одну точку и имеющий нормаль n

Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости(2)

Подставляя координаты векторов M0 и n в (2), получим:

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Видео:№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три изСкачать

№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три из

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .

Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )

Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.

Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Видео:Как проверить лежат ли 4 точки в одной плоскости Аналитическая геометрияСкачать

Как проверить лежат ли 4 точки в одной плоскости  Аналитическая геометрия

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.

Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0

Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.

Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:

2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0

Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:

λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0

Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0

  1. Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:

M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0

Ответ: 3 x + 7 y — 5 z — 26 = 0

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

  1. Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

  1. При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0

Лежат ли прямые в одной плоскости если да то составьте уравнение этой плоскости

Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0

Ответ: x — 7 = 0

Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .

Решение

Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .

Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .

📺 Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

№15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскостиСкачать

№15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскости

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

№12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точкиСкачать

№12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точки

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).

№16. Параллельные прямые a и b лежат в плоскости α. Докажите,Скачать

№16. Параллельные прямые a и b лежат в плоскости α. Докажите,

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскости

2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.
Поделиться или сохранить к себе: