Разделы: Математика
Класс: 10
«Уравнения будут существовать вечно».
Цели урока:
- Образовательные:
- углубление понимания методов решения тригонометрических уравнений;
- сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
- Воспитательные:
- воспитание познавательного интереса к учебному процессу;
- формирование умения анализировать поставленную задачу;
- способствовать улучшению психологического климата в классе.
- Развивающие:
- способствовать развитию навыка самостоятельного приобретения знаний;
- способствовать умению учащихся аргументировать свою точку зрения;
Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.
- 1 урок
- 2 урок (урок-лекция)
- Лекция тригонометрические уравнения и системы
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- 🎥 Видео
1 урок
I. Актуализация опорных знаний
Устно решить уравнения:
1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx =
;
7) tgx =;
8) cos 2 x – sin 2 x = 0
1) х = 2
к;
2) х = ±+ 2
к;
3) х =±+ 2
к;
4) х =к;
5) х = (–1)![]()
+
к;
6) х = (–1)![]()
+ 2
к;
7) х =+
к;
8) х =+
к; к
Z.
II. Изучение нового материала
– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).
Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.
Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.
(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)
1 ученик: 1 способ. Решение уравнений разложением на множители
sin 4x = 3 cos 2x
Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 


2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.
2x = 




x = 


Ответ: x = 


2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение
cos 3x + sin 2x – sin 4x = 0.
Для решения уравнения воспользуемся формулой sin


cos 3x + 2 sin 

сos 3x – 2 sin x cos 3x = 0,
cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:


Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит
Ответ:
3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму
sin 5x cos 3x = sin 6x cos2x.
Для решения уравнения воспользуемся формулой
Ответ:
4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям
3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,
Пусть sin x = t, где | t |




Значит sin x = 

Ответ:
III. Закрепление изученного по учебнику А. Н. Колмогорова
1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. 
(В конце урока показать решение этих уравнений на экране для проверки)
№ 164 (а)
2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 
2 t 2 + t – 1 = 0, t 



Ответ: –
№ 167 (а)
3 tg 2 x + 2 tg x – 1 = 0.
Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.
Ответ:
№ 168 (а )
Ответ:
№ 174 (а )
Ответ:
Решить уравнение:
Ответ:
2 урок (урок-лекция)
IV. Изучение нового материала (продолжение)
– Итак, продолжим изучение способов решения тригонометрических уравнений.
5 способ. Решение однородных тригонометрических уравнений
Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.
sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.
Получим tg x – 1 = 0.
Ответ:
Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.
sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.
tg 2 x – 3tg x + 2 = 0.
Пусть tg x = t. D = 9 – 8 = 1.


В итоге x = arctg 2 + 
Ответ: arctg 2 + 
Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).
Ответ: arctg 2 + 
6 способ. Решение линейных тригонометрических уравнений
Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.
Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:
Учитывая, что 

Ответ:
7 способ. Введение дополнительного аргумента
Выражение a cos x + b sin x можно преобразовать:

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)
Введём дополнительный аргумент – угол 
Тогда
Рассмотрим уравнение: 3 sinx + 4 cosx = 1.
Учтём, что 
0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол 


Ответ: – arcsin 0,8 + 
8 способ. Уравнения вида Р
Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .
Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.
Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = 
t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим 


sinx + cosx = 1 или sinx + cosx =
Ответ:
9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.
Решить уравнение:
В соответствии с общим правилом решения иррациональных уравнений вида
Решим уравнение 1 – cos x = 1 – cos 2 x.
1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию 
Ответ:
10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.
Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 

Решение системы
Ответ:
V. Итог урока
Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.
(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )
Домашнее задание: № 164 -170 (в, г).
Видео:Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Лекция тригонометрические уравнения и системы
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Методы решения тригонометрических уравнений.
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:Математика это не ИсламСкачать

5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos 


Видео:12 часов Тригонометрии с 0.Скачать

6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
🎥 Видео
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

Решение тригонометрических уравнений и их систем. Практическая часть. 10 класс.Скачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

Системы тригонометрических уравнений. Способы решений СТУ.Скачать

Тригонометрические уравнения | Борис ТрушинСкачать

Решение тригонометрических уравнений и их систем. Практическая часть. 10 класс.Скачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Вся Тригонометрия для Чайников, 10 класс, урок 1Скачать

Знаки тригонометрических функций! #никитасалливан #умскул #егэпрофиль #тригонометрияСкачать

Системы тригонометрических уравненийСкачать

;
;
;
+ 2
+ 2



























































