Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Видео:ФОТОЭФФЕКТ И УРАВНЕНИЕ ЭЙНШТЕЙНА НА ПРИМЕРЕ ТЮРЬМЫСкачать

ФОТОЭФФЕКТ И УРАВНЕНИЕ ЭЙНШТЕЙНА НА ПРИМЕРЕ ТЮРЬМЫ

Световые кванты. Фотоэффект

Видео:Урок 434. Фотоэффект. Законы фотоэффектаСкачать

Урок 434. Фотоэффект. Законы фотоэффекта

Возникновение квантовой теории

Основная проблема, с которой физики столкнулись в 90-х годах XIX в., состояла в объяснении спектра теплового излучения абсолютно черного тела.

Абсолютно черное тело – тело, поглощающее всю энергию падающего на него излучения любой частоты при произвольной температуре.

По мере возрастания температуры максимум интенсивности теплового излучения испускаемого абсолютно черным телом смещается к более высоким частотам, что противоречило законам классической физики. Такое расхождение теории с экспериментом в конце XIX в. получило название «ультрафиолетовой катастрофы».

Новая теория света, предложенная в 1900 г. М. Планком основывалась на том, что атомы излучают свет не непрерывно, а дискретно, т.е. отдельными порциями – квантами. Энергия излучения кванта прямо пропорциональна частоте излучения:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Где h=6,62∙10 -34 Дж∙с – постоянная Планка.

В 1905 г. А.Эйнштейн предполагает, что свет не только испускается, но и поглощается квантами.

Для проверки квантовой теории света А.Эйнштейн предложил простой способ: количественные измерения фотоэффекта.

Видео:Физика. ЕГЭ. Фотоэффект теория. Уравнение Эйнштейна.Скачать

Физика. ЕГЭ. Фотоэффект теория. Уравнение Эйнштейна.

Фотоэлектрический эффект

Фотоэффект – явление испускания электронов из вещества под действием света.

Явление фотоэффекта было открыто Г.Герцем в 1887 г. и тщательно исследовано А.Г.Столетовым в 1888 г.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Электромагнитное излучение, падает на катод вакуумной трубки через кварцевое окно прозрачное для ультрафиолетовых волн и вырывает электроны, сообщая им некоторую кинетическую энергию. Благодаря этой энергии электроны улетают от катода, а некоторые из них достигают анода, создавая в цепи электрический ток, называемый фототоком.

Напряжение U между анодом и катодом регулируется потенциометром (реостатом). Интенсивность излучения регулируется мощностью лампы, сетками, светофильтрами. Под действием электрического поля электроны движутся от катода к аноду.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

При постоянной интенсивности света и при увеличении напряжения между катодом и анодом возрастает сила фототока, но до некоторого максимального значения. Затем фототок остается постоянным. Максимальное значение силы тока Iн называется током насыщения. Таким образом, все электроны, выбиваемые светом из катода, достигают анода. Дальнейший рост тока невозможен.

Ток насыщения определяется числом электронов испускаемых за 1с с освещенного электрода.

Обнаружено что, когда напряжение между электродами равно нулю, ток в таком случае не прекращается.

Если полюсы источника поменять местами, то электрическое поле между электродами будет тормозить вырванные электроны. Прекращение электрического тока в цепи означает, что и самые быстрые электроны, получившие от излучения наибольшую кинетическую энергию, не могут преодолеть пространство между электродами с разностью потенциалов U0 и возвращаются на катод.

Следовательно, по величине тормозящего напряжения можно определить максимальное значение кинетической энергии (скорости) фотоэлектронов.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

При изменении интенсивности падающего излучения тормозящее напряжение не меняется.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

При увеличении интенсивности излучения и при постоянном напряжении сила фототока возрастает. Следовательно, сила фототока зависит от интенсивности падающего излучения.

От частоты излучения сила фототока не зависит.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

На опыте было установлено, что скорость электронов (их кинетическая энергия) зависит от частоты излучения, но не зависит от его интенсивности.

Из графика видно, что существует определенное значение частоты излучения, ниже которой излучение не вызывает фотоэффекта независимо от его интенсивности. Такое значение частоты получило название красная граница nкр фотоэффекта. Для каждого вещества красная граница имеет свое значение.

Видео:Относительность 19 - Уравнение ЭйнштейнаСкачать

Относительность 19 - Уравнение Эйнштейна

Законы фотоэффекта

  1. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально мощности падающего светового потока Р.
  1. При увеличении частоты падающего света максимальная кинетическая энергия электронов возрастает линейно по формуле:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

  1. Существует минимальная частота, при которой выбивание электронов с поверхности металла не происходит (красная граница фотоэффекта):

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Видео:законы Столетова Уравнение Эйнштейна для внешнего фотоэффектаСкачать

законы Столетова  Уравнение Эйнштейна для внешнего фотоэффекта

Квантовая теория фотоэффекта

А.Эйнштейн “… свет не только испускается, но и поглощается квантами“.

  1. Следовательно, чем больше квантов энергии попадает на поверхность вещества в единицу времени, тем больше электронов за это же время покидают эту поверхность.
  2. Если принять, что электрон вылетает с поверхности вещества, только поглотив такой квант энергии, то его энергия определяется энергией кванта, а значит и частотой.
  3. Наличие красной границы фотоэффекта объясняется необходимостью совершения определенной работы по вырыванию электронов с поверхности вещества. Такую работу называют работой выхода. Если квант излучения, поглощенный электроном, больше, чем работа выхода, то фотоэффект наблюдается. В противном случае электрон просто не может покинуть вещество.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Эйнштейн для описания взаимодействия кванта света с электроном использовал закон сохранения энергии, где энергия кванта электромагнитного излучения, поглощенная электроном при фотоэффекте, расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии после вылета из вещества.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Эта формула получила название уравнение (формула) Эйнштейна для фотоэффекта.

Таким образом, уравнение фотоэффекта объясняет все законы внешнего фотоэффекта.

Видео:Физика 11 класс (Урок№22 - Фотоэффект.)Скачать

Физика 11 класс (Урок№22 - Фотоэффект.)

Применение фотоэффекта

На основе внешнего фотоэффекта работают вакуумные и газонаполненные фотоэлементы. Их используют в схемах световой сигнализации, а также в звуковом кино для воспроизведения звука, записанного на кинопленке.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

На явлении внутреннего фотоэффекта основано действие вентильных фотоэлементов. Это устройство, в котором энергия световой волны превращается в энергию электрического тока.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Такие источники тока используют в солнечных батареях, устанавливаемых на всех космических кораблях. Вентильные фотоэлементы являются основной частью люксметров – приборов для измерения освещенности, а так же фотоэкспонометров.

Используется при автоматическом управлении электрическими цепями с помощью световых сигналов и в цепях переменного тока.

Опорный конспект к уроку:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Видео:Физика - Внешний фотоэлектрический эффект. уравнение Эйнштейна для фотоэффектаСкачать

Физика - Внешний фотоэлектрический эффект. уравнение Эйнштейна для фотоэффекта

Краткие итоги:

Явление фотоэффекта открыто Г. Герцем в 1887 г. и исследовано Столетовыми Ленардом в 1888 г. Объяснение фотоэффекта противоречило волновой теории света.

Опираясь на идеи Планка о квантовом характере излучения, Эйнштейн в 1905 г.создал теорию фотоэффекта. Свет рассматривался в ней как фотонный газ – электромагнитное излучение, состоящее из потоков световых квантов (фотонов) с энергией E=hν, обладающей скоростью (с), массой (m), импульсом (p), частотой (ν), длиной волны (λ). Применяя закон сохранения энергии, Эйнштейн получилуравнение для фотоэффекта, описывающее взаимодействие одного кванта света с одним электроном:

Данное уравнение позволило объяснить экспериментальные факты, полученные в ходе исследования фотоэффекта с квантовой позиции.

1. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально световому потоку Р.

2. При увеличении частоты падающего света максимальная кинетическая энергия электронов возрастает линейно по формуле:

Видео:Опыты Столетова. Законы фотоэффекта. Уравнение ЭйнштейнаСкачать

Опыты Столетова. Законы фотоэффекта. Уравнение Эйнштейна

E=hν-A

3. Существует минимальная частота при которой выбивание электронов с поверхности металла не происходит (красная граница фотоэффекта):

Видео:Квантовая электродинамика. Теория всего-не законченная теория Эйнштейна.Скачать

Квантовая электродинамика. Теория всего-не законченная теория Эйнштейна.

hν=A

Квантовая теория фотоэффекта была экспериментально проверена в 1914 г. Р.Милликеном.

Явление фотоэффекта лежит в работе фотоэлектронных приборов.

Видео:Урок 435. Теория фотоэффекта. ФотоэлементыСкачать

Урок 435. Теория фотоэффекта. Фотоэлементы

Фотоэффект в физике и его применение — формулы и определение с примерами

Содержание:

Фотоэффект:

Рассмотрим фотоэффект с точки зрения классической электродинамики.

На основе волновой теории света можно предположить, что:

  • – свет любой длины волны должен вырывать электроны из металла;
  • – на вырывание электрона из металла требуется определенное время;
  • – число вырванных электронов и их энергия должны быть пропорциональны интенсивности света.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Александр Григорьевич Столетов (1839–1896) – русский физик. Исследовал внешний фотоэффект, открыл первый закон фотоэффекта. Исследовал газовый разряд, критическое состояние, получил кривую намагничивания железа.

Видео:8.5 Теория фотоэффектаСкачать

8.5 Теория фотоэффекта

Современная установка для исследования фотоэффекта

Современная установка для изучения фотоэффекта представляет собой два электрода, помещенных в стеклянный баллон, из которого выкачан воздух (рис. 210). На один из электродов через кварцевое «окошко» падает свет. В отличие от обычного стекла кварц пропускает ультрафиолетовое излучение. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду К − катоду подсоединяют отрицательный полюс батареи. Под действием света катод испускает электроны, которые направляются электрическим полем к аноду, создается электрический ток. Значение силы тока фиксируется миллиамперметром.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Видео:Фотоэффект. Эффект Комптона (первая часть семинара): формула Эйнштейна.Скачать

Фотоэффект. Эффект Комптона (первая часть семинара): формула Эйнштейна.

Законы фотоэффекта Столетова

Исследования, проведенные русским ученым А.Г. Столетовым и немецким ученым Ф. Ленардом, показали, что законы фотоэффекта не соответствуют классическим представлениям.

На рисунке 211 представлена вольтамперная характеристика, полученная в результате измерений при различных значениях напряжения между электродами.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Из графика следует, что:

1. Сила фототока не зависит от напряжения, если оно достигает некоторого значения Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Максимальное значение силы тока Квантовая теория внешнего фотоэффекта уравнение эйнштейнаназывают током насыщения.

Сила тока насыщения − это максимальный заряд, переносимый фотоэлектронами за единицу времени:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

где n − число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, е − заряд электрона.

2. Сила фототока отлична от нуля при нулевом значении напряжения.

3. Если изменить направление электрического поля, соединив катод с положительным полюсом источника тока, а анод − с отрицательным, то скорость фотоэлектронов уменьшится, об этом можно судить по показаниям миллиамперметра: сила тока уменьшается при увеличении отрицательного значения напряжения. При некотором значении напряжения Квантовая теория внешнего фотоэффекта уравнение эйнштейнакоторый называют задерживающим напряжением, фототок прекращается. Согласно теореме об изменении кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

При известном значении Квантовая теория внешнего фотоэффекта уравнение эйнштейнаможно найти максимальную кинетическую энергию фотоэлектронов.

Исследование фотоэффекта при освещении катода световыми потоками равной частоты, но различной интенсивности дал результат, представленный вольтамперными характеристиками, изображенными на рисунке 212.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Сила фототока насыщения увеличивается с увеличением интенсивности падающего света.

Вспомните! Фотоэффект – это испускание электронов веществом под действием света или любого другого электромагнитного излучения.

Величина запирающего напряжения от интенсивности света не зависит, для всех потоков она имеет одно и то же значение.

Освещение катода светом одной и той же интенсивности, но разной частоты дало серию вольтамперных характеристик, представленных на рисунке 213. Как следует из графиков, величина задерживающего напряжения Квантовая теория внешнего фотоэффекта уравнение эйнштейнаувеличивается с увеличением частоты падающего света, при уменьшении частоты падающего света уменьшается, и при некоторой частоте Квантовая теория внешнего фотоэффекта уравнение эйнштейназадерживающее напряжение равно нулю: Квантовая теория внешнего фотоэффекта уравнение эйнштейнаПри меньших частотах Квантовая теория внешнего фотоэффекта уравнение эйнштейнафотоэффект не наблюдается.

Минимальную частоту падающего света Квантовая теория внешнего фотоэффекта уравнение эйнштейна, при которой еще возможен фотоэффект, называют красной границей фотоэффекта.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

На основании экспериментальных данных Столетовым были сформулированы законы фотоэффекта:

  1. Сила фототока прямо пропорциональна интенсивности светового потока.
  2. Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от интенсивности.
  3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света Квантовая теория внешнего фотоэффекта уравнение эйнштейна(максимальная длина Квантовая теория внешнего фотоэффекта уравнение эйнштейна), при которой возможен фотоэффект, если Квантовая теория внешнего фотоэффекта уравнение эйнштейнато фотоэффект не происходит.
  • Заказать решение задач по физике

Квантовая теория фотоэффекта

Теоретическое обоснование фотоэффекта было дано в 1905 г. А. Эйнштейном. Он предположил, что свет не только излучается квантами, как утверждал М. Планк, но и распространяется и поглощается порциями, представляет собой поток частиц − фотонов, энергия которых равна Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Сам фотоэффект состоит в том, что световые частицы, сталкиваясь с электронами металла, передают им свою энергию и импульс и сами при этом исчезают. Если энергия квантов падающего света больше той работы, которую электрон должен совершить против сил притяжения к положительно заряженным частицам вещества, то электрон вылетает из металла. Становится понятным смысл красной границы фотоэффекта: для вырывания электрона из металла энергия квантов должна быть не меньше, чем Квантовая теория внешнего фотоэффекта уравнение эйнштейнаЭта энергия и равна работе выхода электрона из данного металла. В случае, когда энергия падающих квантов больше работы выхода, максимальная кинетическая энергия электронов равна разности энергии фотона и работы выхода:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Это и есть формула Эйнштейна для фотоэффекта. Обычно ее пишут в виде:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Зависимость силы фототока от интенсивности света Эйнштейн объяснил следующим образом: число вылетающих в единицу времени электронов пропорционально интенсивности света, поскольку интенсивность определяется числом квантов, испускаемых источником в единицу времени. Мощная лампа испускает больше квантов, следовательно, число вырванных электронов светом такой лампы будет больше, чем светом менее мощной лампы.

Энергия вылетающих электронов зависит не от силы света лампы, а от того, какой частоты свет она испускает, от этого зависит энергия фотона и кинетическая энергия фотоэлектрона.

Фотоны, энергия, масса и импульс фотона

Фотон – это частица света. Он не делится на части: испускается, отражается, преломляется и поглощается целым квантом. У него нет массы покоя, неподвижных фотонов не существует.

Энергия фотона

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Квантовая теория внешнего фотоэффекта уравнение эйнштейна− постоянная Планка, Квантовая теория внешнего фотоэффекта уравнение эйнштейнациклическая частота.

Масса фотона

Массу фотона определяют, исходя из закона о взаимосвязи массы и энергии:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Измерить массу фотона невозможно, ее следует рассматривать как полевую массу, обусловленную тем, что электромагнитное поле обладает энергией.

Импульс фотона

Фотон – частица света, следовательно, ее импульс равен:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Применение фотоэффекта в технике

Фотоэлементы:

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Устройство фотоэлемента изображено на рисунке 214. Внутренняя поверхность К (катод) стеклянного баллона, из которого выкачан воздух, покрыта светочувствительным слоем с небольшим прозрачным для света участком для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А (анод). От электродов сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету.

Фотоэлементы используют для автоматического управления электрическими цепями с помощью световых пучков.

Фотореле:

Фотоэлектрическое реле срабатывает при прерывании светового потока, падающего на фотоэлемент (рис. 215). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока Квантовая теория внешнего фотоэффекта уравнение эйнштейнаа на транзистор − от источника тока Квантовая теория внешнего фотоэффекта уравнение эйнштейнаМежду базой и эмиттером транзистора включен нагрузочный резистор R.

Когда фотоэлемент освещен, в его цепи, содержащей резистор R, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер – база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Пример решения задачи

Определите постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой Квантовая теория внешнего фотоэффекта уравнение эйнштейнаГц, полностью задерживаются разностью потенциалов Квантовая теория внешнего фотоэффекта уравнение эйнштейнаа вырываемые светом с частотой Квантовая теория внешнего фотоэффекта уравнение эйнштейна− разностью потенциалов Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Дано:

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Решение: Запишем уравнение Эйнштейна для электрона, вырванного из металла светом с частотами Квантовая теория внешнего фотоэффекта уравнение эйнштейнасоответственно: Квантовая теория внешнего фотоэффекта уравнение эйнштейнаВычитая первое равенство из второго, получим Квантовая теория внешнего фотоэффекта уравнение эйнштейнаоткуда Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Выполним расчеты: Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Ответ: h = 6,6 · 10 –34 Дж · с.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Оптические явления в природе по физике
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Разложение белого света на цвета и образование цветов
  • Давление света в физике
  • Химическое действие света
  • Корпускулярно-волновая природа света

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Задача: УРАВНЕНИЕ ЭЙНШТЕЙНА ДЛЯ ФОТОЭФФЕКТА.Скачать

Задача: УРАВНЕНИЕ ЭЙНШТЕЙНА ДЛЯ ФОТОЭФФЕКТА.

Квантовая теория внешнего фотоэффекта уравнение эйнштейна

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию A , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решетки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

А если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряженность электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Но эксперимент показывает иное.

Откуда берется красная граница фотоэффекта? чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растет и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жесткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно в момент включения освещения. Между тем, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придется их раскачивать до заданной амплитуды. Выглядит опять-таки логично, но опыт единственный критерий истины в физике! этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашел простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлек к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошел еще дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями квантами, обладающими энергией E = h ν .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц фотонов, движущихся в вакууме со скоростью c . Каждый фотон монохроматического света, имеющего частоту, несет энергию h ν .

Фотоны могут обмениваться энергией и импульсом с частицами вещества; в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передает ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идет энергия фотона h ν при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода A по извлечению электрона из вещества и на придание электрону кинетической энергии mv 2 /2: h ν = A + mv 2 /2 (4)

Слагаемое mv 2 /2 оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадет на свободный электрон в поверхностном слое металла тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придется затрачивать дополнительную энергию на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности. Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта:

1. число выбиваемых электронов пропорционально числу поглощенных фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает. Стало быть, пропорционально возрастает число поглощенных фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию: mv 2 /2 = h ν — A

Действительно, кинетическая энергия выбитых электронов линейно растет с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку ( A / h ; 0). Этим полностью объясняется ход графика на рис. 3.

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: h ν > A . Наименьшая частота ν 0, определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта ν 0 = A / h определяется только работой выхода, т. е. зависит лишь от вещества облучаемой поверхности катода.

Уравнение Эйнштейна (4) дает возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение h , в точности совпадающее с (2). Такое совпадение результатов двух независимых экспериментов на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике теории микромира, построение которой продолжается и сегодня.

🔥 Видео

Квантовая теория – курс Эмиля Ахмедова / ПостНаукаСкачать

Квантовая теория – курс Эмиля Ахмедова / ПостНаука

Фотоэффект, красная граница и формула ЭйнштейнаСкачать

Фотоэффект, красная граница и формула Эйнштейна

Квантовая теория, уравнение ЭнштейнаСкачать

Квантовая теория, уравнение Энштейна

КВАНТОВАЯ МЕХАНИКА. Борн VS ЭйнштейнСкачать

КВАНТОВАЯ МЕХАНИКА. Борн VS Эйнштейн

Фотоэффект (видео 3) | Квантовая физика | ФизикаСкачать

Фотоэффект (видео 3) | Квантовая физика | Физика

Гипотеза Планка о световых квантах. Явление фотоэффекта.Скачать

Гипотеза Планка о световых квантах. Явление фотоэффекта.

0128 (часть 2) фотоэффект, уравнение Эйнштейна, определение импульса электронаСкачать

0128 (часть 2) фотоэффект, уравнение Эйнштейна, определение импульса электрона
Поделиться или сохранить к себе: