Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Видео:8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениямиСкачать

8 класс, 24 урок, Основные понятия, связанные с квадратными уравнениями

Квадратные уравнения (способы решения)

Разделы: Математика

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать около 2000 лет до нашей эры в Вавилоне. Применяя современную алгебраическую запись, можно сказать, что в их книгописных текстах встречаются, кроме неполных, и такие, как полные квадратные уравнения.

Определение

Уравнение вида ax 2 + bx + c = 0, где a, b, c — действительные числа, причем a ≠ 0, называют квадратным уравнением.

Если a = 1 , то квадратное уравнение называют приведенным; если a ≠ 1, то неприведенным .
Числа a, b, c носят следующие названия: a — первый коэффициент, b — второй коэффициент, c — свободный член.

Корни уравнения ax 2 + bx + c = 0 находят по формулеКвадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Выражение D = b 2 — 4ac называют дискриминантом квадратного уравнения.

  • если D 0, то уравнение имеет два действительных корня.

В случае, когда D = 0, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Формулы

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Полное квадратное уравнение

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Неполные квадратные уравнения

Если в квадратном уравнении ax 2 + bx + c = 0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным.

Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения — проще решить уравнение методом разложения его левой части на множители.

Способы решения неполных квадратных уравнений:

Решение неполного квадратного уравнения

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Квадратные уравнения с комплексными переменными

Сначала рассмотрим простейшее квадратное уравнение z 2 = a, где a-заданное число, а z-неизвестное. На множестве действительных чисел это уравнение:

  1. имеет один корень z = 0, если а = 0;
  2. имеет два действительных корня z1, 2 = ±√a
  3. Не имеет действительных корней, если a 2 + x + 1 = 0.
    Решим уравнение. Для этого построим два графика y = x 2 ; y = x + 1.

y = x 2 , квадратичная функция, график парабола.
y = x + 1, линейная функция, график прямая.

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Графики пересекаются в двух точках, уравнение имеет два корня.
Ответ: x ≈ -0,6; x ≈ 2,6.

Решение задач с помощью квадратных уравнений

ПроцессыСкорость км/чВремя ч.Расстояние км.
Вверх по реке10 — x35 / (10 — x)35
Вверх по протоку10 — x + 118 / (10 — x + 1)18
V теченияx
V притокаx + 1

Зная, что скорость в стоячей воде равна 10 км/ч, составим уравнение.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Как решать квадратные уравнения

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

О чем эта статья:

Видео:Квадратные уравнения. Основные понятия | Алгебра 8 класс #33 | ИнфоурокСкачать

Квадратные уравнения. Основные понятия | Алгебра 8 класс #33 | Инфоурок

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать

РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19  алгебра 8 класс

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Видео:7. Неполное квадратное уравнение.Скачать

    7. Неполное квадратное уравнение.

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Определение и виды квадратных уравнений. Основные понятия квадратных уравнений. Алгебра 8 классСкачать

    Определение и виды квадратных уравнений. Основные понятия квадратных уравнений. Алгебра 8 класс

    Квадратные уравнения. Часть 1

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    «Квадратные уравнения: от определения до применения» – книга для учителей математики и организаторов образовательных проектов в сфере школьного математического образования. Будет полезна студентам (будущим учителям и организаторам) для прокачки профессиональных компетенций. Школьникам поможет повысить математическую грамотность.

    Оглавление

    • ПРЕДИСЛОВИЕ
    • РАЗДЕЛ I.. ОПРЕДЕЛЕНИЕ, СТРУКТУРА И ЭЛЕМЕНТЫ КВАДРАТНОГО УРАВНЕНИЯ

    Приведённый ознакомительный фрагмент книги Квадратные уравнения. Часть 1 предоставлен нашим книжным партнёром — компанией ЛитРес.

    ОПРЕДЕЛЕНИЕ, СТРУКТУРА И ЭЛЕМЕНТЫ КВАДРАТНОГО УРАВНЕНИЯ

    §1. Мысли с потолка, ведущие к идее,

    или Откуда что взялось?

    …Забавное число — ноль. На что ни умножь — само же в результате и получается! Прямо загляденье:

    0 × 0 = 0 × 1 = 0 × 2 = 0 × 10 =… = 0, т.е. 0 × a = 0 × 0

    Однако, интересно, а будет ли выполняться равенство 0 × a = 0 2 , если вместо нуля поставить произвольное число? Например, какое удвоенное число равно своему квадрату, то есть x × 2 = x 2 ? Или утроенное x × 3 = x 2 ?

    Поставим задачу в общем виде: найти число, квадрат которого, равен произведению этого числа на конкретное данное число a. Построим модель: xx = ax или x 2 = ax.

    Так как мы ищем число, отличное от нуля, то, разделив обе части построенного равенства на x, получим, что x = a.

    То есть, если удвоенное число равно своему квадрату, то это число 2, а если утроенное, то 3.

    Можно этот факт запомнить — вдруг пригодится.

    …Инструктаж судьи на одном из этапов туристической эстафеты:

    — Вам необходимо огородить участок прямоугольной формы, площадью 1 ар для стоянки. Дополнительные очки той команде, которая затратит как можно меньше страховочной верёвки. На старт, внимание, начали!

    1 ар — это 100 квадратных метров. Участок может иметь размеры 20 × 5 или 25 × 4. Но наша команда знает, что наименьший периметр прямоугольника при его заданной площади будет в том случае, если он — квадрат (теперь и вы это помните!). Отлично! Значит необходимо найти сторону квадрата, если его площадь равна 100. Ну, это легко! Ещё с младших классов, благодаря большой вычислительной практике, помним, что число 10 умноженное на себя даёт сто.

    Хорошо, что мы не на уроке математики, а то пришлось бы составлять уравнение x 2 = 100…

    …Не так давно с нами эксперимент проводили: надо было из множества прямоугольников разнообразной формы выбрать один, который покажется самым приятным на вид. Многочисленные повторения этого опыта показали, что чаще всего люди выбирают те прямоугольники, стороны которого относятся как «золотая пропорция». Золотое (или гармоническое) сечение — это такое деление отрезка, при котором отношение всего отрезка к большей части равно отношению большей части к меньшей 1: x = x: (1 — x).

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Если воспользоваться свойством пропорции (произведение крайних членов равно произведению средних), то можно получить уравнение, чтобы найти длину большей части этого отрезка: x 2 = 1 — x.

    …В каком прямоугольном треугольнике стороны выражаются тремя последовательными натуральными числами?

    Пусть n длина меньшего катета, тогда второй катет и гипотенуза выражаются как (n +1) и (n +2).

    По теореме Пифагора все длины увязываем в уравнение:

    Пифагорейцы исследовали фигурные числа, в частности, треугольные (их можно изобразить в виде треугольника).

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Треугольное число с номером n можно найти как половину произведения n× (n+1). Для ответа на вопрос, является ли треугольным число 45 и если да, то каков его номер, надо решить уравнение (n+1) = 90…

    Задумайте два натуральных числа от 1 до 20. Найдите их сумму и произведение. Сообщите мне. Я отгадаю задуманные вами числа. Вам интересно, как я это сделаю.

    или Определение квадратного уравнения

    Квадратным называется уравнение вида ax 2 + bx + c = 0, где a, b, c — некоторые заданные действительные числа, причём a ≠ 0, а x принимается за неизвестное.

    a — старшим или первым коэффициентом,

    c — свободным или третьим 1 .

    «Нумерация» коэффициентов зависит не от их реального месторасположения, а от того, при какой степени неизвестной они находятся. Например, число 2 будет первым коэффициентом в любом из трёх уравнений:

    А вот число 5 в третьем уравнении является свободным коэффициентом, а в первом уравнении — вторым коэффициентом.

    То есть первый (старший) коэффициент — это множитель при квадрате неизвестной, второй — при первой степени. Свободный (третий) коэффициент — это слагаемое без неизвестной, то есть «свободный от неизвестной».

    Очевидно, что в качестве неизвестного необязательно брать букву x. Более того, привыкнув за школьные годы к этому неизменному обозначению, среднестатистический ученик начинает испытывать затруднения в восприятии (узнавании, интерпретации) квадратных уравнений, встречающихся при решении более сложных математических (физических и других) задач.

    Собственно говоря, и коэффициенты квадратного уравнения не всегда могут обозначаться указанными выше буквами. Одним словом, квадратное уравнение имеет вполне определённую структуру, а как обозначаются элементы этой структуры — дело десятое. Человек со сложившимся математическим стилем мышления понимает, что квадратным уравнением будет являться любое равенство, в правой части которого стоит ноль, а в левой — сумма трёх слагаемых, одно из которых является произвольным числом, другое — произведением произвольного числа на первую степень неизвестного и третье — произведением ненулевого числа на вторую степень неизвестного.

    Тогда квадратными будут уравнения:

    Уравнение y 2 + xy + x 2 = 0 можно рассматривать как квадратное, но только либо относительно x, либо только относительно y.

    Пока же договоримся, что теоретические вопросы будем излагать на привычных обозначениях.

    Вернёмся к определению. Давайте выделим внешние, «бросающиеся в глаза», черты квадратного уравнения. Во-первых, наличие знака равенства. Отсутствие его с очевидностью снимает вопрос о правомерности называть объект уравнением.

    (Любое ли равенство является уравнением — разговор особый и не в рамках этой книги.)

    Во-вторых, левая часть нашего равенства представляет собой алгебраическую сумму трёх слагаемых.

    Возникает первый вопрос: обязательно трёх?

    Другими словами количество слагаемых — это определяющий признак или нет? Давайте посмотрим.

    Значения второго и свободного коэффициентов квадратного уравнения в определении никак не ограничиваются (в отличие от первого). Следовательно, они могут быть равными нулю. Тогда под определение квадратного подходят уравнения вида

    Но в левых частях этих уравнениях не три слагаемых!

    Тем не менее, это — квадратные уравнения, потому что их можно записать так

    Так как количество слагаемых левой части уравнений ax 2 + bx = 0, ax 2 + c = 0, ax 2 = 0 визуально меньше, чем может быть, их называют неполными квадратными уравнениями. Тогда как квадратное уравнение ax 2 + bx + c = 0, в котором все коэффициенты отличны от нуля, называют полным.

    Таким образом, отсутствие в записи конкретного уравнения свободного члена или слагаемого с первой степенью неизвестного не даёт нам права сомневаться в том, что уравнение всё-таки квадратное. Однако и наличие их не является веской причиной отнести уравнение к квадратным. Об этом чуть ниже.

    Следующим возникает вопрос, а почему, собственно a ≠ 0? (Конечно, искушённый читатель знает почему.) Можно ли, например, уравнение вида ax 2 + (a — 1) x + a = 0 (или в общем виде f (a) x 2 + g (a) x + h (a) = 0) называть квадратным?

    Давайте похулиганим и поставим в качестве первого коэффициента ноль. Тогда уравнение примет вид bx + c = 0.

    Но это же линейное уравнение! Оно имеет свою теорию, свои изюминки.

    Пусть будут «мухи отдельно, котлеты отдельно».

    Теперь понятно, что требование a ≠ 0 необходимо для сохранения в квадратном уравнении второй степени — квадрата — неизвестного. Вот этот признак будет определяющим!

    В дальнейшем, говоря о квадратном уравнении, мы будем помнить, что старший коэффициент не равен нулю, не оговаривая это каждый раз. Договорились?

    Тогда уравнение f (a) x 2 + g (a) x + h (a) = 0 правильно называть уравнением с параметром второй степени, которое при определённых условиях может быть квадратным, а может им и не быть (стать линейным).

    Однако не будем торопиться. Наличие второй степени неизвестного — необходимый, но не достаточный признак квадратного уравнения.

    Рассмотрим следующие уравнения:

    Выполним сравнительный анализ этих уравнений с квадратным ax 2 + bx + c = 0 по трём признакам:

    — наличие второй степени неизвестной,

    — наибольшая степень неизвестной,

    Зафиксируем для каждого уравнения эти параметры.

    Результаты сравнительного анализа организуем в таблицу.

    Квадратным уравнением называют уравнение вида где a b c любые действительные числа причем

    Итак, что мы имеем?

    Наличие второй степени неизвестного является общим для всех трёх уравнений. Но по двум другим признакам сравнения, квадратное уравнение отличается: в квадратном уравнении вторая степень неизвестной является наибольшей и неизвестная только одна.

    Именно это и важно!

    Собственно говоря, квадратным является целое рациональное (или по-другому — алгебраическое) уравнение второй степени с одним неизвестным 2 .

    Процесс ограничения класса алгебраических уравнений можно представить в двух направлениях:

    алгебраическое уравнение → первой степени, второй степени и так далее;

    алгебраическое уравнение → с одной неизвестной, с двумя неизвестными и так далее.

    ax + b = 0 — уравнение первой степени с одной неизвестной;

    ax + by + c = 0 — уравнение первой степени с двумя неизвестными;

    ax 2 + bx + c = 0 — уравнение второй степени с одной неизвестной;

    ax 2 + bxy + cy 2 + kx + ly + m = 0 — уравнение второй степени с двумя неизвестными.

    Тогда ближайшими родовыми понятиями для квадратного уравнения будут: алгебраическое уравнение второй степени или алгебраическое уравнение с одним неизвестным. Выбирая в качестве родового понятия разные объекты, мы сможем получить различные формулировки определения квадратного уравнения. Попробуйте!

    Наконец, рассмотрим правую часть равенства в определении квадратного уравнения. Она представляет собой конкретное число — ноль. А может быть что-нибудь другое?

    Если мы хотим видеть квадратное уравнение «в чистом виде», то ничего, кроме нуля, в правой части быть не должно. Но…

    Рассмотрим уравнение ax 2 + bx + c = m, где m число отличное от нуля. Тогда мы, основываясь на равносильности преобразований уравнений 3 , можем записать

    То есть мы, собственно, получили квадратное уравнение.

    Таким образом, уравнения двух приведённых выше видов

    ax 2 + bx + c = m и ax 2 + bx + c = mx + n есть смысл назвать сводящимися к квадратным. То есть, если в правой части стоит многочлен с одной (той же, что и в левой части!) неизвестной степени не выше первой, то с помощью соответствующих преобразований квадратное уравнение мы получим без проблем.

    Если же в правой части будет стоять многочлен с одной неизвестной второй степени, то квадратное уравнение может и не получиться.

    Ситуация первая: ax 2 + bx + c =ay 2 + by + c.

    Как бы ни старались, квадратного уравнения мы не получим. Неизвестных две, и это равенство не входит в множество математических объектов «квадратные уравнения». Вывод: неизвестная правой части должна быть такой же, что и в левой!

    Ситуация вторая. Преобразуйте самостоятельно, например, два следующих уравнения:

    Получилось ли у вас квадратное уравнение в первом случае? А во втором? Как будет называться уравнение, которое сведётся не к квадратному?

    Определите условие, при котором уравнение такого вида всё-таки будет сводиться к квадратному 4 .

    Как ещё один пример рассмотрите уравнение

    Таким образом, наличие второй степени неизвестной в записи уравнения не всегда будет означать, что оно квадратное.

    Очевидно, что если в правой части стоит многочлен с одной переменной степени выше второй, то квадратного уравнения мы ни при каких условиях не получим.

    Итак, есть квадратные уравнения, а есть уравнения, сводящиеся к квадратным.

    📽️ Видео

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Формула корней квадратного уравнения. Алгебра, 8 классСкачать

    Формула корней квадратного уравнения. Алгебра, 8 класс

    Алгебра 8 класс : Основные понятия квадратного уравненияСкачать

    Алгебра 8 класс : Основные понятия квадратного уравнения

    Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

    Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

    8 класс. Квадратное уравнение и его корни. Алгебра.Скачать

    8 класс. Квадратное уравнение и его корни. Алгебра.

    Какое уравнение называют КВАДРАТНЫМ. НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ. Примеры квадратных уравненийСкачать

    Какое уравнение называют КВАДРАТНЫМ.  НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ.  Примеры квадратных уравнений

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

    Неполные квадратные уравнения. Урок 15. Алгебра 8 классСкачать

    Неполные квадратные уравнения. Урок 15. Алгебра 8 класс

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения
    Поделиться или сохранить к себе: