Квадратные уравнения с дробными коэффициентами

Решение дробных уравнений с преобразованием в квадратные уравнения

Дробным уравнением называется уравнение, в котором хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное. Например, дробным уравнением является уравнение Квадратные уравнения с дробными коэффициентами.

Решать дробные уравнения удобно в следующем порядке:

  • найти общий знаменатель дробей, входящих в уравнение, если каждая дробь имеет смысл,
  • заменить данное уравнение целым, умножив обе его часть на общий знаменатель,
  • решить получившееся целое уравнение,
  • исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример 1. Решить дробное уравнение:

Квадратные уравнения с дробными коэффициентами.

Решение. Воспользуемся основным свойством дроби с представим левую и правую части этого уравнения в виде дробей с одинаковым знаменателем:

Квадратные уравнения с дробными коэффициентами.

Эти дроби равны при тех и только тех значениях, при которых равны их числители, а знаменатель отличен от нуля. Если знаменатель равен нулю, то дроби, а следовательно, и уравнение не имеет смысла.

Таким образом, чтобы найти корни данного уравнения, нужно решить уравнение

Квадратные уравнения с дробными коэффициентами.

Упростив уравнение (раскрыв скобки и приведя подобные члены), получим квадратное уравнение

Квадратные уравнения с дробными коэффициентами.

Квадратные уравнения с дробными коэффициентами.

Найденные корни не обращают знаменатель в нуль, поэтому они являются корнями исходного дробного уравнения.

Пример 2. Решить дробное уравнение:

Квадратные уравнения с дробными коэффициентами.

Решение. Найдём общий знаменатель дробей, входящих в данное дробное уравнение. Общий знаменатель —

Квадратные уравнения с дробными коэффициентами.

Заменим исходное уравнение целым. Для этого умножим обе его части на общий знаменатель. Получим:

Квадратные уравнения с дробными коэффициентами

Выполним необходимые преобразования в полученном уравнении и придём к квадратному уравнению

Квадратные уравнения с дробными коэффициентами.

Квадратные уравнения с дробными коэффициентами.

Если x = -3 , то найденный на первом шаге знаменатель обращается в нуль:

Квадратные уравнения с дробными коэффициентами,

то же самое, если x = 3 .

Следовательно, числа -3 и 3 не являются корнями исходного уравнения, а, поскольку никакие другие корни не найдены, данное уравнение не имеет решения.

Пример 3. Решить дробное уравнение:

Квадратные уравнения с дробными коэффициентами.

Решение. Найдём общий знаменатель дробей, входящих в данное уравнение. Для этого знаменатели дробей разложим на множители:

Квадратные уравнения с дробными коэффициентами.

Общий знаменатель — выражение

Квадратные уравнения с дробными коэффициентами

Заменим исходное уравнение целым, умножив обе его части на общий знаменатель. Получим:

Квадратные уравнения с дробными коэффициентами

Выполнив преобразования, придём к квадратному уравнению

Квадратные уравнения с дробными коэффициентами.

Квадратные уравнения с дробными коэффициентами.

Ни один из корней не обращает общий знаменатель в нуль. Следовательно, числа -4 и 9 — корни данного уравнения.

Пример 4. Решить дробное уравнение:

Квадратные уравнения с дробными коэффициентами.

Решение. Введём новую переменную, обозначив Квадратные уравнения с дробными коэффициентами. Получим уравнение с переменной y :

Квадратные уравнения с дробными коэффициентами.

Корни этого уравнения:

Квадратные уравнения с дробными коэффициентами

Квадратные уравнения с дробными коэффициентамиили Квадратные уравнения с дробными коэффициентами.

Из уравнения Квадратные уравнения с дробными коэффициентаминаходим, что

Квадратные уравнения с дробными коэффициентами.

Из уравнения Квадратные уравнения с дробными коэффициентаминаходим, что

Квадратные уравнения с дробными коэффициентами.

Итак, данное уравнение имеет четыре корня:

Квадратные уравнения с дробными коэффициентами, Квадратные уравнения с дробными коэффициентами.

Содержание
  1. Как решать квадратные уравнения
  2. Понятие квадратного уравнения
  3. Приведенные и неприведенные квадратные уравнения
  4. Полные и неполные квадратные уравнения
  5. Решение неполных квадратных уравнений
  6. Как решить уравнение ax 2 = 0
  7. Как решить уравнение ax 2 + с = 0
  8. Как решить уравнение ax 2 + bx = 0
  9. Как разложить квадратное уравнение
  10. Дискриминант: формула корней квадратного уравнения
  11. Алгоритм решения квадратных уравнений по формулам корней
  12. Примеры решения квадратных уравнений
  13. Формула корней для четных вторых коэффициентов
  14. Формула Виета
  15. Упрощаем вид квадратных уравнений
  16. Связь между корнями и коэффициентами
  17. Решение квадратных уравнений, формула корней, примеры
  18. Что такое квадратное уравнение? Их виды
  19. Определение и примеры квадратных уравнений
  20. Приведенные и неприведенные квадратные уравнения
  21. Полные и неполные квадратные уравнения
  22. Решение неполных квадратных уравнений
  23. a·x 2 =0
  24. a·x 2 +c=0
  25. a·x 2 +b·x=0
  26. Дискриминант, формула корней квадратного уравнения
  27. Вывод формулы корней квадратного уравнения
  28. Алгоритм решения квадратных уравнений по формулам корней
  29. Примеры решения квадратных уравнений
  30. 🎦 Видео

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Как решать квадратные уравнения

Квадратные уравнения с дробными коэффициентами

О чем эта статья:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Квадратные уравнения с дробными коэффициентами

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:Уравнение с дробными коэффициентами.Скачать

Уравнение с дробными коэффициентами.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:урок 3 Уравнения с дробными коэффициентамиСкачать

урок 3  Уравнения с дробными коэффициентами

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Квадратные уравнения с дробными коэффициентами

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Квадратные уравнения с дробными коэффициентами

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Квадратные уравнения с дробными коэффициентами, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Квадратные уравнения с дробными коэффициентами

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Квадратные уравнения с дробными коэффициентами

    Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Квадратные уравнения с дробными коэффициентами

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Квадратные уравнения с дробными коэффициентами

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Квадратные уравнения с дробными коэффициентами

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Квадратные уравнения с дробными коэффициентами

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Квадратные уравнения с дробными коэффициентами

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Уравнение с дробными коэффициентами. ОГЭ математика задача 4 (тип 6)🔴Скачать

    Уравнение с дробными коэффициентами. ОГЭ математика задача 4 (тип 6)🔴

    Решение квадратных уравнений, формула корней, примеры

    Продолжаем изучение темы «решение уравнений». Мы уже познакомились с линейными уравнениями и переходим к знакомству с квадратными уравнениями.

    Сначала мы разберем, что такое квадратное уравнение, как оно записывается в общем виде, и дадим связанные определения. После этого на примерах подробно разберем, как решаются неполные квадратные уравнения. Дальше перейдем к решению полных уравнений, получим формулу корней, познакомимся с дискриминантом квадратного уравнения и рассмотрим решения характерных примеров. Наконец, проследим связи между корнями и коэффициентами.

    Навигация по странице.

    Видео:Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    Что такое квадратное уравнение? Их виды

    Для начала надо отчетливо понимать, что такое квадратное уравнение. Поэтому разговор о квадратных уравнениях логично начать с определения квадратного уравнения, а также связанных с ним определений. После этого можно рассмотреть основные виды квадратных уравнений: приведенные и неприведенные, а также полные и неполные уравнения.

    Определение и примеры квадратных уравнений

    Квадратное уравнение – это уравнение вида a·x 2 +b·x+c=0 , где x – переменная, a , b и c – некоторые числа, причем a отлично от нуля.

    Сразу скажем, что квадратные уравнения часто называют уравнениями второй степени. Это связано с тем, что квадратное уравнение является алгебраическим уравнением второй степени.

    Озвученное определение позволяет привести примеры квадратных уравнений. Так 2·x 2 +6·x+1=0 , 0,2·x 2 +2,5·x+0,03=0 и т.п. – это квадратные уравнения.

    Числа a , b и c называют коэффициентами квадратного уравнения a·x 2 +b·x+c=0 , причем коэффициент a называют первым, или старшим, или коэффициентом при x 2 , b – вторым коэффициентом, или коэффициентом при x , а c – свободным членом.

    Для примера возьмем квадратное уравнение вида 5·x 2 −2·x−3=0 , здесь старший коэффициент есть 5 , второй коэффициент равен −2 , а свободный член равен −3 . Обратите внимание, когда коэффициенты b и/или c отрицательные, как в только что приведенном примере, то используется краткая форма записи квадратного уравнения вида 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

    Стоит отметить, что когда коэффициенты a и/или b равны 1 или −1 , то они в записи квадратного уравнения обычно не присутствуют явно, что связано с особенностями записи таких числовых коэффициентов. Например, в квадратном уравнении y 2 −y+3=0 старший коэффициент есть единица, а коэффициент при y равен −1 .

    Приведенные и неприведенные квадратные уравнения

    В зависимости от значения старшего коэффициента различают приведенные и неприведенные квадратные уравнения. Дадим соответствующие определения.

    Квадратное уравнение, в котором старший коэффициент равен 1 , называют приведенным квадратным уравнением. В противном случае квадратное уравнение является неприведенным.

    Согласно данному определению, квадратные уравнения x 2 −3·x+1=0 , x 2 −x−2/3=0 и т.п. – приведенные, в каждом из них первый коэффициент равен единице. А 5·x 2 −x−1=0 , и т.п. — неприведенные квадратные уравнения, их старшие коэффициенты отличны от 1 .

    От любого неприведенного квадратного уравнения с помощью деления его обеих частей на старший коэффициент можно перейти к приведенному. Это действие является равносильным преобразованием, то есть, полученное таким способом приведенное квадратное уравнение имеет те же корни, что и исходное неприведенное квадратное уравнение, или, так же как оно, не имеет корней.

    Разберем на примере, как выполняется переход от неприведенного квадратного уравнения к приведенному.

    От уравнения 3·x 2 +12·x−7=0 перейдите к соответствующему приведенному квадратному уравнению.

    Нам достаточно выполнить деление обеих частей исходного уравнения на старший коэффициент 3 , он отличен от нуля, поэтому мы можем выполнить это действие. Имеем (3·x 2 +12·x−7):3=0:3 , что то же самое, (3·x 2 ):3+(12·x):3−7:3=0 , и дальше (3:3)·x 2 +(12:3)·x−7:3=0 , откуда . Так мы получили приведенное квадратное уравнение, равносильное исходному.

    Полные и неполные квадратные уравнения

    В определении квадратного уравнения присутствует условие a≠0 . Это условие нужно для того, чтобы уравнение a·x 2 +b·x+c=0 было именно квадратным, так как при a=0 оно фактически становится линейным уравнением вида b·x+c=0 .

    Что касается коэффициентов b и c , то они могут быть равны нулю, причем как по отдельности, так и вместе. В этих случаях квадратное уравнение называют неполным.

    Квадратное уравнение a·x 2 +b·x+c=0 называют неполным, если хотя бы один из коэффициентов b , c равен нулю.

    Полное квадратное уравнение – это уравнение, у которого все коэффициенты отличны от нуля.

    Такие названия даны не случайно. Из следующих рассуждений это станет понятно.

    Если коэффициент b равен нулю, то квадратное уравнение принимает вид a·x 2 +0·x+c=0 , и оно равносильно уравнению a·x 2 +c=0 . Если c=0 , то есть, квадратное уравнение имеет вид a·x 2 +b·x+0=0 , то его можно переписать как a·x 2 +b·x=0 . А при b=0 и c=0 мы получим квадратное уравнение a·x 2 =0 . Полученные уравнения отличаются от полного квадратного уравнения тем, что их левые части не содержат либо слагаемого с переменной x, либо свободного члена, либо и того и другого. Отсюда и их название – неполные квадратные уравнения.

    Так уравнения x 2 +x+1=0 и −2·x 2 −5·x+0,2=0 – это примеры полных квадратных уравнений, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – это неполные квадратные уравнения.

    Видео:8 класс. Решение уравнений с дробными коэффициентами. Обучающее видеоСкачать

    8 класс.  Решение уравнений с дробными коэффициентами.  Обучающее видео

    Решение неполных квадратных уравнений

    Из информации предыдущего пункта следует, что существует три вида неполных квадратных уравнений:

    • a·x 2 =0 , ему отвечают коэффициенты b=0 и c=0 ;
    • a·x 2 +c=0 , когда b=0 ;
    • и a·x 2 +b·x=0 , когда c=0 .

    Разберем по порядку, как решаются неполные квадратные уравнения каждого из этих видов.

    a·x 2 =0

    Начнем с решения неполных квадратных уравнений, в которых коэффициенты b и c равны нулю, то есть, с уравнений вида a·x 2 =0 . Уравнению a·x 2 =0 равносильно уравнение x 2 =0 , которое получается из исходного делением его обеих частей на отличное от нуля число a . Очевидно, корнем уравнения x 2 =0 является нуль, так как 0 2 =0 . Других корней это уравнение не имеет, что объясняется свойствами степени, действительно, для любого отличного от нуля числа p имеет место неравенство p 2 >0 , откуда следует, что при p≠0 равенство p 2 =0 никогда не достигается.

    Итак, неполное квадратное уравнение a·x 2 =0 имеет единственный корень x=0 .

    В качестве примера приведем решение неполного квадратного уравнения −4·x 2 =0 . Ему равносильно уравнение x 2 =0 , его единственным корнем является x=0 , следовательно, и исходное уравнение имеет единственный корень нуль.

    Краткое решение в этом случае можно оформить следующим образом:
    −4·x 2 =0 ,
    x 2 =0 ,
    x=0 .

    a·x 2 +c=0

    Теперь рассмотрим, как решаются неполные квадратные уравнения, в которых коэффициент b равен нулю, а c≠0 , то есть, уравнения вида a·x 2 +c=0 . Мы знаем, что перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также деление обеих частей уравнения на отличное от нуля число дают равносильное уравнение. Поэтому можно провести следующие равносильные преобразования неполного квадратного уравнения a·x 2 +c=0 :

    • перенести c в правую часть, что дает уравнение a·x 2 =−c ,
    • и разделить обе его части на a , получаем .

    Полученное уравнение позволяет сделать выводы о его корнях. В зависимости от значений a и c значение выражения может быть отрицательным (например, если a=1 и c=2 , то ) или положительным, (к примеру, если a=−2 и c=6 , то ), оно не равно нулю, так как по условию c≠0 . Отдельно разберем случаи и .

    Если , то уравнение не имеет корней. Это утверждение следует из того, что квадрат любого числа есть число неотрицательное. Из этого вытекает, что когда , то ни для какого числа p равенство не может быть верным.

    Если , то дело с корнями уравнения обстоит иначе. В этом случае, если вспомнить о квадратном корне, то сразу становится очевиден корень уравнения , им является число , так как . Несложно догадаться, что и число тоже является корнем уравнения , действительно, . Других корней это уравнение не имеет, что можно показать, например, методом от противного. Сделаем это.

    Обозначим только что озвученные корни уравнения как x1 и −x1 . Предположим, что уравнение имеет еще один корень x2 , отличный от указанных корней x1 и −x1 . Известно, что подстановка в уравнение вместо x его корней обращает уравнение в верное числовое равенство. Для x1 и −x1 имеем , а для x2 имеем . Свойства числовых равенств нам позволяют выполнять почленное вычитание верных числовых равенств, так вычитание соответствующих частей равенств и дает x1 2 −x2 2 =0 . Свойства действий с числами позволяют переписать полученное равенство как (x1−x2)·(x1+x2)=0 . Мы знаем, что произведение двух чисел равно нулю тогда и только тогда, когда хотя бы одно из них равно нулю. Следовательно, из полученного равенства следует, что x1−x2=0 и/или x1+x2=0 , что то же самое, x2=x1 и/или x2=−x1 . Так мы пришли к противоречию, так как вначале мы сказали, что корень уравнения x2 отличен от x1 и −x1 . Этим доказано, что уравнение не имеет других корней, кроме и .

    Обобщим информацию этого пункта. Неполное квадратное уравнение a·x 2 +c=0 равносильно уравнению , которое

    • не имеет корней, если ,
    • имеет два корня и , если .

    Рассмотрим примеры решения неполных квадратных уравнений вида a·x 2 +c=0 .

    Начнем с квадратного уравнения 9·x 2 +7=0 . После переноса свободного члена в правую часть уравнения, оно примет вид 9·x 2 =−7 . Разделив обе части полученного уравнения на 9 , придем к . Так как в правой части получилось отрицательное число, то это уравнение не имеет корней, следовательно, и исходное неполное квадратное уравнение 9·x 2 +7=0 не имеет корней.

    Решим еще одно неполное квадратное уравнение −x 2 +9=0 . Переносим девятку в правую часть: −x 2 =−9 . Теперь делим обе части на −1 , получаем x 2 =9 . В правой части находится положительное число, откуда заключаем, что или . После извлечения корня записываем окончательный ответ: неполное квадратное уравнение −x 2 +9=0 имеет два корня x=3 или x=−3 .

    a·x 2 +b·x=0

    Осталось разобраться с решением последнего вида неполных квадратных уравнений при c=0 . Неполные квадратные уравнения вида a·x 2 +b·x=0 позволяет решить метод разложения на множители. Очевидно, мы можем разложить на множители многочлен, находящийся в левой части уравнения, для чего достаточно вынести за скобки общий множитель x . Это позволяет перейти от исходного неполного квадратного уравнения к равносильному уравнению вида x·(a·x+b)=0 . А это уравнение равносильно совокупности двух уравнений x=0 и a·x+b=0 , последнее из которых является линейным и имеет корень x=−b/a .

    Итак, неполное квадратное уравнение a·x 2 +b·x=0 имеет два корня x=0 и x=−b/a .

    Для закрепления материала разберем решение конкретного примера.

    Выносим x за скобки, это дает уравнение . Оно равносильно двум уравнениям x=0 и . Решаем полученное линейное уравнение: , и выполнив деление смешанного числа на обыкновенную дробь, находим . Следовательно, корнями исходного уравнения являются x=0 и .

    После получения необходимой практики, решения подобных уравнений можно записывать кратко:

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Дискриминант, формула корней квадратного уравнения

    Для решения квадратных уравнений существуют формула корней. Запишем формулу корней квадратного уравнения: Квадратные уравнения с дробными коэффициентами, где D=b 2 −4·a·c – так называемый дискриминант квадратного уравнения. Запись по сути означает, что .

    Полезно знать, как была получена формула корней, и как она применяется при нахождении корней квадратных уравнений. Разберемся с этим.

    Вывод формулы корней квадратного уравнения

    Пусть нам нужно решить квадратное уравнение a·x 2 +b·x+c=0 . Выполним некоторые равносильные преобразования:

    • Обе части этого уравнения мы можем разделить на отличное от нуля число a , в результате получим приведенное квадратное уравнение .
    • Теперь выделим полный квадрат в его левой части: . После этого уравнение примет вид .
    • На этом этапе можно осуществить перенос двух последних слагаемых в правую часть с противоположным знаком, имеем .
    • И еще преобразуем выражение, оказавшееся в правой части: .

    В итоге мы приходим к уравнению , которое равносильно исходному квадратному уравнению a·x 2 +b·x+c=0 .

    Аналогичные по форме уравнения мы уже решали в предыдущих пунктах, когда разбирали решение неполных квадратных уравнений. Это позволяет сделать следующие выводы, касающиеся корней уравнения :

    • если , то уравнение не имеет действительных решений;
    • если , то уравнение имеет вид , следовательно, , откуда виден его единственный корень ;
    • если , то или , что то же самое или , то есть, уравнение имеет два корня.

    Таким образом, наличие или отсутствие корней уравнения , а значит и исходного квадратного уравнения, зависит от знака выражения , стоящего в правой части. В свою очередь знак этого выражения определяется знаком числителя, так как знаменатель 4·a 2 всегда положителен, то есть, знаком выражения b 2 −4·a·c . Это выражение b 2 −4·a·c , назвали дискриминантом квадратного уравнения и обозначили буквой D. Отсюда понятна суть дискриминанта – по его значению и знаку делают вывод, имеет ли квадратное уравнение действительные корни, и если имеет, то каково их количество — один или два.

    Возвращаемся к уравнению , перепишем его с использованием обозначения дискриминанта: . И делаем выводы:

    • если D , то это уравнение не имеет действительных корней;
    • если D=0 , то это уравнение имеет единственный корень ;
    • наконец, если D>0 , то уравнение имеет два корня или , которые в силу свойств радикалов можно переписать в виде или , а после раскрытия модуля и приведения дробей к общему знаменателю получаем .

    Так мы вывели формулы корней квадратного уравнения, они имеют вид , где дискриминант D вычисляется по формуле D=b 2 −4·a·c .

    С их помощью при положительном дискриминанте можно вычислить оба действительных корня квадратного уравнения. При равном нулю дискриминанте обе формулы дают одно и то же значение корня, соответствующее единственному решению квадратного уравнения. А при отрицательном дискриминанте при попытке воспользоваться формулой корней квадратного уравнения мы сталкиваемся с извлечением квадратного корня из отрицательного числа, что выводит нас за рамки действительных чисел и школьной программы. При отрицательном дискриминанте квадратное уравнение не имеет действительных корней, но имеет пару комплексно сопряженных корней, которые можно найти по тем же полученным нами формулам корней .

    Алгоритм решения квадратных уравнений по формулам корней

    На практике при решении квадратных уравнения можно сразу использовать формулу корней, с помощью которой вычислить их значения. Но это больше относиться к нахождению комплексных корней.

    Однако в школьном курсе алгебры обычно речь идет не о комплексных, а о действительных корнях квадратного уравнения. В этом случае целесообразно перед использованием формул корней квадратного уравнения предварительно найти дискриминант, убедиться, что он неотрицательный (в противном случае можно делать вывод, что уравнение не имеет действительных корней), и уже после этого вычислять значения корней.

    Приведенные рассуждения позволяют записать алгоритм решения квадратного уравнения. Чтобы решить квадратное уравнение a·x 2 +b·x+c=0 , надо:

    • по формуле дискриминанта D=b 2 −4·a·c вычислить его значение;
    • заключить, что квадратное уравнение не имеет действительных корней, если дискриминант отрицательный;
    • вычислить единственный корень уравнения по формуле , если D=0 ;
    • найти два действительных корня квадратного уравнения по формуле корней , если дискриминант положительный.

    Здесь лишь заметим, что при равном нулю дискриминанте можно использовать и формулу , она даст то же значение, что и .

    Можно переходить к примерам применения алгоритма решения квадратных уравнений.

    Примеры решения квадратных уравнений

    Рассмотрим решения трех квадратных уравнений с положительным, отрицательным и равным нулю дискриминантом. Разобравшись с их решением, по аналогии можно будет решить любое другое квадратное уравнение. Начнем.

    Найдите корни уравнения x 2 +2·x−6=0 .

    В этом случае имеем следующие коэффициенты квадратного уравнения: a=1 , b=2 и c=−6 . Согласно алгоритму, сначала надо вычислить дискриминант, для этого подставляем указанные a , b и c в формулу дискриминанта, имеем D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28 . Так как 28>0 , то есть, дискриминант больше нуля, то квадратное уравнение имеет два действительных корня. Найдем их по формуле корней , получаем , здесь можно упростить полученные выражения, выполнив вынесение множителя за знак корня с последующим сокращением дроби:

    Переходим к следующему характерному примеру.

    🎦 Видео

    Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс

    СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 классСкачать

    СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 класс

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

    Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Дробно рациональные уравнения. Алгебра, 9 классСкачать

    Дробно рациональные уравнения. Алгебра, 9 класс

    Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

    Решение дробных рациональных уравнений. Алгебра, 8 класс

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные
    Поделиться или сохранить к себе: