Квадратное уравнение условия существования корней

Как решать квадратные уравнения

Квадратное уравнение условия существования корней

О чем эта статья:

Содержание
  1. Понятие квадратного уравнения
  2. Приведенные и неприведенные квадратные уравнения
  3. Полные и неполные квадратные уравнения
  4. Решение неполных квадратных уравнений
  5. Как решить уравнение ax 2 = 0
  6. Как решить уравнение ax 2 + с = 0
  7. Как решить уравнение ax 2 + bx = 0
  8. Как разложить квадратное уравнение
  9. Дискриминант: формула корней квадратного уравнения
  10. Алгоритм решения квадратных уравнений по формулам корней
  11. Примеры решения квадратных уравнений
  12. Формула корней для четных вторых коэффициентов
  13. Формула Виета
  14. Упрощаем вид квадратных уравнений
  15. Связь между корнями и коэффициентами
  16. Элективный курс «Исследование корней квадратного уравнения» (9-й класс)
  17. Решение квадратных уравнений: формула корней, примеры
  18. Квадратное уравнение, его виды
  19. Приведенные и неприведенные квадратные уравнения
  20. Полные и неполные квадратные уравнения
  21. Решение неполных квадратных уравнений
  22. Решение уравнения a·x 2 =0
  23. Решение уравнения a · x 2 + c = 0
  24. Решение уравнения a·x 2 +b·x=0
  25. Дискриминант, формула корней квадратного уравнения
  26. Вывод формулы корней квадратного уравнения
  27. Алгоритм решения квадратных уравнений по формулам корней
  28. Примеры решения квадратных уравнений
  29. Формула корней для четных вторых коэффициентов
  30. Упрощение вида квадратных уравнений
  31. Связь между корнями и коэффициентами

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Квадратное уравнение условия существования корней

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:8 класс. Квадратное уравнение и его корни. Алгебра.Скачать

    8 класс. Квадратное уравнение и его корни. Алгебра.

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Квадратное уравнение условия существования корней

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Квадратное уравнение условия существования корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Квадратное уравнение условия существования корней, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Квадратное уравнение условия существования корней

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Квадратное уравнение условия существования корней

    Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать

    Комплексные корни квадратных уравнений. 11 класс.

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Квадратное уравнение условия существования корней

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Квадратное уравнение условия существования корней

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Квадратное уравнение условия существования корней

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Квадратное уравнение условия существования корней

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Квадратное уравнение условия существования корней

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Элективный курс «Исследование корней квадратного уравнения» (9-й класс)

    Разделы: Математика

    Класс: 9

    Программа

    1. Квадратное уравнение и его корни. (2 ч.)

    Определение квадратного уравнения. Дискриминант квадратного уравнения. Корни квадратного уравнения. Понятие о решение задачи с параметром.

    2. Теория Виета. (2 ч.)

    Формулировка теоремы Виета для полного и приведённого квадратного уравнения. Теорема, обратная теореме Виета. Решение задач на применение теоремы Виета и обратной ей.

    3. Существование корней квадратного уравнения (2 ч.)

    Зависимость числа корней квадратного уравнения от дискриминанта.
    Решение задач на количество корней квадратного уравнения в зависимости от значения параметра.

    4. Расположение корней квадратного уравнения. (4 ч.)

    Графическая характеристика расположения корней квадратного уравнения на числовой прямой по отношению к фиксированному числу. Работа с таблицей. Решение задач. Практикум по решению задач на расположение корней квадратного уравнения.

    5. Решение квадратных уравнений с параметром (2 ч.) Что значит решить уравнение с параметром. Решение уравнений.

    6. Решение задач. Зачёт. (6 ч.)

    I. Квадратное уравнение и его корни

    Квадратным уравнением называется уравнение вида ах 2 + bх + с = 0, где х – переменная, а, b, с – некоторые числа, а =/= 0. В зависимости от дискриминанта D = b 2 – 4ac квадратное уравнение может иметь два корня (D > 0), один корень (D = 0) и не иметь корней (D 2 + рх + q = 0. О квадратном уравнении, имеющем единственный корень, иногда говорят, что оно имеет корень двойной кратности или оно имеет два равных корня.

    1. При каких значениях m ровно один из корней уравнения равен 0:

    2..При каких значениях а корни уравнения равны по модулю, но противоположны по знаку:

    3.При каких значениях к оба корня уравнения равны 0:

    4. Найти корни квадратного уравнения ах 2 + + с = 0, если а) а + b + с = 0; б) а – b + с = 0.

    Указание к решению: а) надо использовать то, что х = 1 является корнем данного уравнения.

    5. При каком значении а уравнения х 2 + ах + 1 = 0 и х 2 + х + а = 0 имеют общий корень?

    6. Доказать, что при любом значении а уравнение (а – 3) х 2 + (а + 2) х + 1 = 0 имеет два корня.

    II. Теорема Виета

    Зависимость между корнями и коэффициентами квадратного уравнения выражает теорема Виета.

    Пусть х1 и х2 – корни квадратного уравнения ах 2 + + с = 0, тогда х1 + х2 = – b/a, х1х2 = c/a. Для приведённого квадратного уравнения х 2 + рх + q = 0, если х1 и х2 – корни этого уравнения, то х1 + х2 = – p, х1х2 = q.
    Справедливо утверждение, обратное теореме Виета: если числа m и n таковы, что их сумма равна – р, а произведение равно q, то эти числа являются корнями уравнения х 2 + рх + q = 0.

    1. Не вычисляя корней уравнения 3х 2 + 8х – 1 = 0, найти:

    2. Пусть х1 и х2 – корни уравнения 2х 2 – 7х – 3 = 0. Составить квадратное уравнение, корнями которого являются числа:

    3. При каком значении параметра а один из корней уравнения х 2 – 3,75х + а = 0 является квадратом другого?

    4. При каком значении параметра а один из корней уравнения х 2 – (3а + 2)х + а 2 = 0 в девять раз больше другого?

    5 . Корни х1 и х2 уравнения х 2 + рх + 12 = 0 обладают свойством х2х1 = 1. Найти р.

    6. При каком значении параметра а уравнение х 2 + (а 2 + а – 2)х + а = 0 имеет корни, сумма которых равна 0?

    7. При каком значении параметра а уравнение (а – 1)х 2 + (2а + 3)х + 2 + а = 0 имеет корни одного знака?

    Ответ: [ – 2,125; – 2) Квадратное уравнение условия существования корней(1; + Квадратное уравнение условия существования корней).

    8. При каком значении параметра а корни уравнения ах 2 + (2а – 1)х + а – 2 = 0 отрицательны и их сумма меньше – 5?

    9. При каком значении параметра р корни уравнения (р – 2)х 2 + 2рх + р + 4 = 0 разных знаков и их сумма отрицательна?

    III. Существование корней квадратного уравнения

    Для того чтобы квадратное уравнение ах 2 + + с = 0 имело корни необходимо и достаточно чтобы дискриминант уравнения был больше или равен нулю. Как правило, в случае необходимости доказать, что заданное квадратное уравнение имеет решение, начинают с вычисления его дискриминанта, с тем чтобы затем доказать его неотрицательность. Но существуют способы, которые основываются на очевидных графических соображениях. Так, если а > 0, то для доказательства того, что уравнение ах 2 + bx + с = 0 имеет два решения, достаточно указать одну точку х0, в которой f(x0) = ах0 2 + bx0 + c 3 – 2а 2 )х 2 – (а 3 – а + 2)х + а 2 + 1 = 0 имеет решение.

    Решение. Обозначим левую часть данного уравнения через f(x). Сразу видно, что f(0) = a 2 + 1 > 0 при любом а. Утверждение задачи будет доказано , если мы найдём х1, для которого f(x1) 2 + a – 1 2 – 2Квадратное уравнение условия существования корней3(а – 3)х + а 2 – 3а + 2 = 0 имеет решение? Определить знаки корней в зависимости от а.

    Решение. Если а 2 – 3а + 2 0 и х2 > 0, необходимо и достаточно выполнения неравенств:

    Квадратное уравнение условия существования корней

    Аналогично рассматриваются другие случаи.

    3. При каких значениях параметра а уравнение а(а + 3)х 2 + (2а + 6)х – 3а – 9 = 0 имеет более одного корня?

    Комментарий к решению. Данное уравнение – квадратное, если а =/= 0, а =/= 3. Квадратное уравнение имеет более одного корня, если D/4 = (а + 3) 2 – а(а + 3)( – 3а – 9) > 0
    Однако решение полученного неравенства не является окончательным решением задачи. Мы должны еще рассмотреть случай, когда исходное уравнение является линейным с бесконечным множеством решений. Проверка случаев а = 0 и а = – 3 позволяет обнаружить, что линейное уравнение имеет бесконечное множество решений при а = – 3.

    Ответ: Квадратное уравнение условия существования корней( – 1/3;0) Квадратное уравнение условия существования корней(0; + Квадратное уравнение условия существования корней)

    4. При каком значении параметра а уравнение (а – 2)х 2 + (4 – 2а)х + 3 = 0 имеет единственный корень?

    Комментарий к решению. Если а = 2, то уравнение превращается в линейное, которое не имеет корней. Если а =/= 0, то уравнение квадратное и имеет единственный корень при нулевом дискриминанте. D = а 2 – 7а + 10 = 0 при а = 2 или а = 5. Значение а = 2 исключается, т.к. противоречит условию, что исходное уравнение – квадратное.

    5. При каком значении параметра а уравнение (а – 1)х 2 + (а + 4)х + а + 7 = 0 имеет единственное решение?

    6. При каком значении параметра а уравнение (2а – 5)х 2 – 2(а – 1)х + 3 = 0 имеет единственное решение?

    7. При каком значении параметра а уравнение имеет единственное решение?

    IV. Расположение корней квадратного уравнения

    Для решения задач этого пункта существует таблица (см. Приложение), но нет необходимости заучивать её, надо понять принцип построения таблицы и уметь проводить необходимые рассуждения в конкретных задачах.

    1. При каком значении параметра а один корень уравнения х 2 – (3а + 2)х + 2а – 1 = 0 больше 1, а другой меньше 1?

    Решение. Решение легко получается на основании графического соображения. График функции у = х 2 – (3а + 2)х + 2а – 1 представляет собой параболу, ветви которой направлены вверх. По условию эта парабола должна пересекать ось X, причем отрезок [х1; х2] должен содержать внутри себя точку 1. Следовательно, значение квадратного трехчлена х 2 – (3а + 2) х + 2а – 1 при х = 1 должно быть отрицательным. Это условие является необходимым и достаточным для того, чтобы выполнялось неравенство х1 – 2.

    В общем случае для того, чтобы уравнение f(х) = ах 2 + вх + с = 0 имело бы один корень меньше А, а другой больше А, необходимо и достаточно выполнения неравенства аf(A) 2 – 3ах + 2 = 0 больше 1/2.

    Комментарий к решению. Если а = 2, то х = 2/3 (2/3 > 1/2). Если а =/= 2, то уравнение – квадратное. Введем обозначение f(x) = (2 – а)х 2 – 3ах + 2, хв = 3а/2(2 – а), D = а(17а – 16). Тогда для выполнения условия примера необходимо и достаточно одновременное выполнение следующих условий: D > 0, хв > 1/2, (2 – а)f(1/2) > 0. Решая эту систему, получим: 16/7 2 – 2(а + 3)х + 4а = 0 имеет 2 корня, один из которых меньше 2, а другой больше 3.

    Комментарий к решению. Так как речь идет о двух корнях, то рассматриваемое уравнение должно быть квадратным, то есть, а =/= 2. Рассмотрим функцию f(х) = (а – 2)х 2 – 2(а + 3)х + 4а, (а =/= 2). Ее графиком является парабола, которая по условию задачи пересекает ось ОX один раз на интервале ( – Квадратное уравнение условия существования корней; 2) и один раз на интервале (3; + Квадратное уравнение условия существования корней). Для решения примера необходимо и достаточно решить систему неравенств:

    Квадратное уравнение условия существования корней

    Ответ: 2 2 – (3а + 1)ха – 2 = 0 лежат в промежутке ( – 1;2)?

    5. Найти все значения а, при которых ровно один корень уравнения х 2 + 2ах + 3а – 2 = 0 удовлетворяет условию х 2 – 6х + а = 0 имеет два различных действительных корня, из которых только один принадлежит интервалу (1;7).

    Комментарий к решению. Дискриминант уравнения D = в 2 – 16. Найдя промежутки знакопостоянства дискриминанта, получим ответ: если в 4, то х = (в ± Квадратное уравнение условия существования корнейв 2 – 16)/2; если в = ±4, то х = в/2;если – 4 2 – 2ах + 2а – 3 = 0.

    Комментарий к решению. Рассмотрим два случая: а = 2 и а =/= 2. В первом случае исходное уравнение принимает вид – 4х + 1 = 0. Это линейное уравнение с одним корнем х = 0,25. Во втором случае получим квадратное уравнение с дискриминантом D = – 4(a – 1)(a – 6). Найдём промежутки знакопостоянства дискриминанта и его нулевые точки.

    В результате решения получаем ответ:

    3.. Решить уравнение (2а – 1)х 2 – (3а + 1)х + а – 1 = 0.

    Ответ: если а = 0,5, то х = – 0,2; если – 9 – Квадратное уравнение условия существования корней84 0,5 то х = (3а + 1 + Квадратное уравнение условия существования корнейа 2 + 18а – 3)/(2а – 1)

    4. Решить уравнение ах 2 – (1 – 2а)х + 2 – а = 0.

    Ответ: если а = 0, то х = – 2; если а 0, то х1,2 = (1 – 2а ± Квадратное уравнение условия существования корней4а + 1)/2а.

    5. Решить уравнение (х 2 – 5х + 6)/(ха) = 0

    Ответ: если а = 2, то х = 3; если а = 3, то х = 2; если а =/= 2, а =/= 3, то х = 2 или х = 3.

    VI. Разные задачи

    1. Найти все значения а, при которых уравнения ах 2 + (3 + 4а)х + 2а 2 + 4а + 3 = 0 имеет только целые корни.

    Решение. Пусть а = 0, тогда из уравнения следует, что 3х + 3 = 0, х = – 1. Поэтому а = 0 удовлетворяет условию задачи. Пусть а =/= 0, тогда уравнение равносильно уравнению х 2 + (4 + 3/а)х + 2а + 4 + 3/а = 0. Если х1 и х2 – целые корни нового уравнения, то – 4 – 3/а и 2а + 4 + 3/а – целые числа (теорема Виета), откуда следует, что их сумма, то есть 2а – целое число. Пусть 2а = n, где n Квадратное уравнение условия существования корнейZ, тогда а = n/2, 3/а = 6/n, причем 6/n – целое число, то есть n может принимать значения из чисел ±1; ±2; ±3; ±6. Проверка показывает, что только при n = – 1 и n = 3 все корни исходного уравнения являются целыми числами.

    2. Найти все значения а, при которых уравнение х 2 + (а + 2)х + 1 – а = 0 имеет 2 действительных корня х1 и х2 такие, что х1х2 2 + (а + 2)х + 1 – а и заметим, что если условия задачи выполняются, то f( – 4) > 0, f(4) > 0, f(0) > 0. Получили систему:

    Квадратное уравнение условия существования корней

    Решая систему, получаем 1 2 – 3ах + 4а = 0 в зависимости от а?

    Ответ: если – 1 2 + | х – 1| = 0

    Ответ: если а 0, то корней нет.

    Ответ: если а 0, то корней нет.

    Ответ: если а 3, то корней нет; если а = ±3, то один корень; если – 3 2 – рх + 2р 2 – 3р = 0 равен нулю?

    2. При каком значении параметра р корни уравнения 3х 2 + (р 2 – 4р)х + р – 1 = 0 равны по модулю, но противоположны по знаку?

    3. При каком значении параметра а оба корня уравнения 2х 2 + (3а 2 – | а |)ха 3 – 3а = 0 равны нулю?

    4. Не вычисляя корней уравнения 2х 2 – 5х – 4 = 0 найти:

    5. Пусть х1 и х2 – корни уравнения 4х 2 – 6х – 1 = 0. Составить квадратное уравнение, корнями которого являются числа:

    6. В уравнении 5х 2 – ах + 1 = 0 определить а так, чтобы разность корней равнялась единице.

    Ответ: ±Квадратное уравнение условия существования корней5.

    7. При каких значениях параметра а отношение корней уравнения х 2 – (а + 3)х + 6 = 0 равно 1,5?

    8. При каких значениях параметра а сумма корней уравнения (2а + 1)х 2 + (а + 1)х + а = 0 положительна?

    9. При каких значениях параметра а корни уравнения (а + 1)х 2 + (2 – а)х + а + 6 = 0 положительны?

    10. При каких значениях параметра а корни уравнения (а – 1)х 2 + (2а + 3)х + 2 + а = 0 имеют одинаковые знаки?

    Ответ: [ – 2,125; – 2) Квадратное уравнение условия существования корней(1; + Квадратное уравнение условия существования корней).

    11. При каких значениях параметра а оба корня уравнения 4х 2 + (3а + 4)х – 3 = 0 лежат в промежутке ( – 2 ; 1)?

    12. При каких значениях параметра а уравнение (а – 1)х 2 = (а + 1)ха имеет единственное решение, удовлетворяющее условию 0 2 – 6х + 1 = 0;
    б) ах 2 = 4;
    в) х 2 – ах = 0;
    г) ах 2 + 8 = 2х 2 + 4а.

    14. Решить уравнение (а – 1)х 2 + 2(2а + 1)х + (4а + 3) = 0.

    Ответ: если а – 4/5 и а =/= 1, то х1,2 = ( – (2а + 1) ± Квадратное уравнение условия существования корней5а + 4)/(a – 1).

    Литература

    1. Макарычев Ю.Н. Миндюк Н.Г. Алгебра 8. Дополнительные главы к школьному учебнику. Москва. «Просвещение». 2005.
    2. Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре 8 – 9. Москва. «Просвещение». 2005.
    3. Шарыгин И.Ф. Факультативный курс по математике 10. Москва. «Просвещение». 2004.
    4. Литвиненко В.Н., Мордкович А. Г. Практикум по решению математических задач. Москва. «Просвещение». 1998.
    5. Евсеева А.И. Уравнения с параметрами. Математика в школе. 2003 г. № 7.
    6. Шабунин М.И. Уравнения и системы уравнений с параметрами. Математика в школе. 2003 №3.
    7. Мещерякова Г.П. Задачи с параметрами, сводящиеся к квадратным уравнениям. Математика в школе. 2001 г. № 5.
    8. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. Москва-Харьков. «Илекса», «Гимназия». 2002.

    Видео:Комплексные корни квадратного уравненияСкачать

    Комплексные корни квадратного уравнения

    Решение квадратных уравнений: формула корней, примеры

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Видео:Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис ТрушинСкачать

    Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис Трушин

    Квадратное уравнение, его виды

    Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

    Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

    К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

    Видео:МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула КорнейСкачать

    МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула Корней

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

    9 · x 2 − x − 2 = 0 — неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x — 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

    Ответ: x 2 + 3 · x — 1 1 6 = 0 .

    Видео:Составьте квадратное уравнение, корнями которого являются числаСкачать

    Составьте квадратное уравнение, корнями которого являются числа

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

    Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
    • a · x 2 + c = 0 при b = 0 ;
    • a · x 2 + b · x = 0 при c = 0 .

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Видео:Решение квадратного уравнения с выводом формулы корнейСкачать

    Решение квадратного уравнения с выводом формулы корней

    Решение уравнения a·x 2 =0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

    Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

    Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень — нуль.

    Кратко решение оформляется так:

    − 3 · x 2 = 0 , x 2 = 0 , x = 0 .

    Видео:Квадратное уравнение, дискриминант, формула корнейСкачать

    Квадратное уравнение, дискриминант, формула корней

    Решение уравнения a · x 2 + c = 0

    На очереди — решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
    • делим обе части уравнения на a , получаем в итоге x = — c a .

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения — c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда — c a = — 2 1 = — 2 ) или знак плюс (например, если a = − 2 и c = 6 , то — c a = — 6 — 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда — c a 0 и — c a > 0 .

    В случае, когда — c a 0 , уравнение x 2 = — c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при — c a 0 ни для какого числа p равенство p 2 = — c a не может быть верным.

    Все иначе, когда — c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = — c a будет число — c a , поскольку — c a 2 = — c a . Нетрудно понять, что число — — c a — также корень уравнения x 2 = — c a : действительно, — — c a 2 = — c a .

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = — c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x 1 и − x 1 запишем: x 1 2 = — c a , а для x 2 — x 2 2 = — c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = — c a и x = — — c a .

    Резюмируем все рассуждения выше.

    Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = — c a , которое:

    • не будет иметь корней при — c a 0 ;
    • будет иметь два корня x = — c a и x = — — c a при — c a > 0 .

    Приведем примеры решения уравнений a · x 2 + c = 0 .

    Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

    Решение

    Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
    Разделим обе части полученного уравнения на 9 , придем к x 2 = — 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

    Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

    Необходимо решить уравнение − x 2 + 36 = 0 .

    Решение

    Перенесем 36 в правую часть: − x 2 = − 36 .
    Разделим обе части на − 1 , получим x 2 = 36 . В правой части — положительное число, отсюда можно сделать вывод, что x = 36 или x = — 36 .
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

    Ответ: x = 6 или x = − 6 .

    Видео:Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Решение уравнения a·x 2 +b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

    Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

    Закрепим материал примером.

    Необходимо найти решение уравнения 2 3 · x 2 — 2 2 7 · x = 0 .

    Решение

    Вынесем x за скобки и получим уравнение x · 2 3 · x — 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x — 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

    Кратко решение уравнения запишем так:

    2 3 · x 2 — 2 2 7 · x = 0 x · 2 3 · x — 2 2 7 = 0

    x = 0 или 2 3 · x — 2 2 7 = 0

    x = 0 или x = 3 3 7

    Ответ: x = 0 , x = 3 3 7 .

    Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    x = — b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

    Запись x = — b ± D 2 · a по сути означает, что x 1 = — b + D 2 · a , x 2 = — b — D 2 · a .

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Видео:Математика| Разложение квадратного трехчлена на множители.Скачать

    Математика| Разложение квадратного трехчлена на множители.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
    • выделим полный квадрат в левой части получившегося уравнения:
      x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 — b 2 · a 2 + c a = = x + b 2 · a 2 — b 2 · a 2 + c a
      После этого уравнения примет вид: x + b 2 · a 2 — b 2 · a 2 + c a = 0 ;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 — c a ;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b 2 · a 2 — c a = b 2 4 · a 2 — c a = b 2 4 · a 2 — 4 · a · c 4 · a 2 = b 2 — 4 · a · c 4 · a 2 .

    Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 :

    • при b 2 — 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
    • при b 2 — 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

    Отсюда очевиден единственный корень x = — b 2 · a ;

    • при b 2 — 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = b 2 · a — b 2 — 4 · a · c 4 · a 2 , что то же самое, что x + — b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = — b 2 · a — b 2 — 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 — 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название — дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней — один или два.

    Вернемся к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

    Вновь сформулируем выводы:

    • при D 0 уравнение не имеет действительных корней;
    • при D = 0 уравнение имеет единственный корень x = — b 2 · a ;
    • при D > 0 уравнение имеет два корня: x = — b 2 · a + D 4 · a 2 или x = — b 2 · a — D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = — b 2 · a + D 2 · a или — b 2 · a — D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = — b + D 2 · a , x = — b — D 2 · a .

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x = — b + D 2 · a , x = — b — D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Видео:Откуда взялись ФОРМУЛЫ КОРНЕЙ квадратного уравнения? | МатематикаСкачать

    Откуда взялись ФОРМУЛЫ КОРНЕЙ квадратного уравнения? | Математика

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

    Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

    • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
    • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D = 0 найти единственный корень уравнения по формуле x = — b 2 · a ;
    • при D > 0 определить два действительных корня квадратного уравнения по формуле x = — b ± D 2 · a .

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = — b ± D 2 · a , она даст тот же результат, что и формула x = — b 2 · a .

    Видео:Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

    Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x = — b ± D 2 · a и, подставив соответствующие значения, получим: x = — 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x = — 2 + 2 · 7 2 или x = — 2 — 2 · 7 2

    x = — 1 + 7 или x = — 1 — 7

    Ответ: x = — 1 + 7 ​​​​​​, x = — 1 — 7 .

    Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

    Решение

    Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = — b 2 · a .

    x = — 28 2 · ( — 4 ) x = 3 , 5

    Ответ: x = 3 , 5 .

    Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

    Решение

    Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x = — 6 + 2 · i 10 или x = — 6 — 2 · i 10 ,

    x = — 3 5 + 1 5 · i или x = — 3 5 — 1 5 · i .

    Ответ: действительные корни отсутствуют; комплексные корни следующие: — 3 5 + 1 5 · i , — 3 5 — 1 5 · i .

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x = — b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

    x = — 2 · n ± D 2 · a , x = — 2 · n ± 4 · n 2 — a · c 2 · a , x = — 2 · n ± 2 n 2 — a · c 2 · a , x = — n ± n 2 — a · c a .

    Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

    x = — n ± D 1 a , где D 1 = n 2 − a · c .

    Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

    • найти D 1 = n 2 − a · c ;
    • при D 1 0 сделать вывод, что действительных корней нет;
    • при D 1 = 0 определить единственный корень уравнения по формуле x = — n a ;
    • при D 1 > 0 определить два действительных корня по формуле x = — n ± D 1 a .

    Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

    Решение

    Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

    Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x = — n ± D 1 a , x = — — 3 ± 169 5 , x = 3 ± 13 5 ,

    x = 3 + 13 5 или x = 3 — 13 5

    x = 3 1 5 или x = — 2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x = 3 1 5 или x = — 2 .

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x — 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x = — b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x 1 + x 2 = — b a и x 2 = c a .

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней — 22 3 .

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 — 2 · x 1 · x 2 = — b a 2 — 2 · c a = b 2 a 2 — 2 · c a = b 2 — 2 · a · c a 2 .

    Поделиться или сохранить к себе: