62. Одно уравнение с тремя неизвестными . Пусть имеем уравнение
На это уравнение можно смотреть, как на запись задачи: найти числовые значения для x, y и z, чтобы трехчлен 3x + 4y – 2z оказался равен числу 11. Таким образом это уравнение является уравнением с тремя неизвестными. Так как мы можем решить одно уравнение с одним неизвестным, то уже с первого взгляда возникает мысль, что 2 неизвестных здесь являются как бы лишними, и им можно давать произвольные значения. И действительно, если, например, взять для y число 3 и для z число 5, то получим уравнение с одним неизвестным:
Возьмем другие числа для y и z. Например, пусть
Тогда получим уравнение:
Продолжая эту работу дальше, мы придем к заключению:
Одно уравнение с тремя неизвестными имеет бесконечно много решений, и для получения их надо двум неизвестным давать произвольные значения.
Результаты этой работы можно записать в таблице (мы, кроме двух уже найденных решений, записали в ней еще одно, которое получится, если положить y = –1 и z = –2):
Так как для y и для z мы берем произвольные значения, то они являются независимыми переменными, а x является зависимым (от них) переменным. Другими словами: x является функциею от y и z.
Чтобы удобнее получать решения этого уравнения, можно определить из него x через y и z. Получим:
3x + 4y – 2z = 11; 3x = 11 – 4y + 2z;
x = (11 – 4y + 2z) / 3.
Дадим, напр., значения: y = 5 и z = 1; получим: x = (11 – 20 + 2) / 3 = –2(1/3) и т. д.
Возьмем еще уравнение
Примем x и y за независимые переменные, а z — за зависимое и определим z через x и y
–2z = 7 – 3x + 5y; 2z = 3x – 5y – 7; z = (3x – 5y – 7) / 2
- Алгебраические системы с тремя неизвестными с примерами решения
- Алгебраические системы с тремя неизвестными
- Примеры с решениями
- Пример №186.
- Пример №187.
- Пример №188.
- Пример №189.
- Пример №190.
- Пример №191.
- Пример №192.
- Пример №193.
- Решить систему из 3-х уравнений с 3-мя неизвестными онлайн
- Калькулятор
- Инструкция
- Что такое система из 3-х уравнений с 3-мя неизвестными
- 🎬 Видео
Видео:2 уравнения и 3 неизвестных — система, которая на олимпиаде вынесла почти всехСкачать

Алгебраические системы с тремя неизвестными с примерами решения
Алгебраические системы с тремя неизвестными
Для систем с тремя неизвестными определения понятий равносильности и следствия, а также свойства преобразований систем формулируются аналогично тому, как это было сделано для систем с двумя неизвестными.
Будем рассматривать системы вида
где 





Сформулируем для систем уравнений с тремя неизвестными следующие утверждения, которые могут оказаться полезными при решении систем.
1° Если 



и поэтому множество решений системы (1) в этом случае есть объединение множеств решений систем (2) и (3).
2°. Если уравнение

есть следствие системы (1), то система
равносильна системе (1), т. е. при добавлении к системе (1) еще одного уравнения (4), являющегося следствием этой системы, получается система, равносильная системе (1).
3°. Если уравнение (4) — следствие системы (1), причем 


4°. Система (1) равносильна каждой из следующих систем:
5°. Если уравнение 




Это утверждение лежит в основе метода исключения неизвестных: система (1) сводится к системе (5), (6) с двумя неизвестными.
Прежде чем переходить к примерам алгебраических систем с тремя неизвестными, отметим, что нет общих рецептов для нахождения решений систем. Каждый раз нужно учитывать конкретные особенности рассматриваемой системы. Можно дать только общий совет: решайте побольше задач.
Рассмотрим сначала системы с тремя неизвестными, которые сводятся к кубическим уравнениям.
К таким системам относятся системы симметрических алгебраических уравнений, т.е. системы вида (1), где 





В этом случае удобно ввести следующие переменные:
Простейший пример системы рассматриваемого вида — система
Система (7) и кубическое уравнение
связаны следующим образом.
Если 













Доказательство этого утверждения основано на использовании формул Виета для корней уравнения (8):
Для сведения к системам (7) систем симметрических уравнений вида
можно использовать следующие тождества:
Примеры с решениями
Пример №186.
Решить систему уравнений
Решение:
Используя уравнения (12), (13) и тождество (9), получаем
Применяя формулу (11) и учитывая равенства (13)-(15), находим
Следовательно, исходная система равносильна системе вида (7), в которой 
Корни этого уравнения — числа 
Ответ.
Обратимся теперь к системам с тремя неизвестными, которые не являются симметрическими.
Пример №187.
Решить систему уравнений
Решение:
Так как правые части уравнений отличны от нуля, то 


Сложив уравнения системы (16), находим
Из (16) и (17) получаем 
Перемножив почленно уравнения системы (18), которая равносильна исходной, имеем 
Следовательно, исходная система равносильна совокупности систем (18), (19) и (18), (20), которые имеют решения 

Ответ.
Пример №188.
Решить систему уравнений

Решение:
Будем решать систему методом исключения неизвестных и сведением, в конечном счете, к одному уравнению с одним неизвестным. Складывая почленно уравнения (21) и (23), получаем
Так как 
Запишем далее уравнение (22) в виде

Исключив 

Заметим, что система (27), (25), (21) равносильна системе (21)— (23). Подставляя выражения для 

или 



Ответ.
Пример №189.
Решить систему уравнений
Решение:
Перемножив уравнения системы (28), получаем

Уравнение (29) является следствием системы (28), которая равносильна системе
Уравнения (30), (31), (32) имеют решения 
Ответ.
Пример №190.
Найти решения системы уравнений

Решение:
Вычитая из уравнения (34) уравнение (33), получаем
Далее, вычитая из уравнения (35) уравнение (33), находим
Наконец, складывая уравнения (34) и (35), получаем
Система (37)-(39) равносильна системе (33)-(35), а при условии (36) — системе линейных уравнений
имеющей единственное решение
Ответ.
Пример №191.
Решить систему уравнений

Решение:
Вычтем из уравнения (41) уравнение (40) и преобразуем полученное уравнение к виду

Выполнив ту же операцию с уравнениями (42) и (41), имеем

Система (43), (44), (42), равносильная системе (40)-(42), распадается на следующие четыре системы:
Полученные системы легко решаются методом исключения неизвестных. Объединив решения этих систем, найдем все решения исходной системы.
Ответ.
Пример №192.
Решить систему уравнений
Решение:
Решим эту систему как линейную относительно 

Перемножив уравнения системы (46) и полагая 



Система (45) в силу утверждения 3° равносильна совокупности систем (46), (47) и (46), (48), каждая из которых имеет единственное решение.
Ответ.
Пример №193.
Решить систему уравнений

Решение:
Если 







Будем искать решения системы (49) такие, что 


Прибавив к уравнению (51) второе уравнение системы (49), умноженное на 
Каждое из уравнений (51), (52) является следствием системы (49).
Так как 


Исключая 
Уравнения (53) и (54) являются следствиями системы (49), а уравнение (54) равносильно совокупности уравнений

Из (55) и (53) следует, что 



Из (56) и (53) следует, что 


Ответ. 

Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:
Возможно вам будут полезны эти страницы:




















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Система с тремя переменнымиСкачать

Решить систему из 3-х уравнений с 3-мя неизвестными онлайн
Этот онлайн калькулятор предназначен для решения систем из трёх уравнений с тремя неизвестными. Вы можете быть уверены, что калькулятор выдаёт точный результат.
Видео:Универсальный способ решения симметрических систем с тремя неизвестнымиСкачать

Калькулятор
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

Инструкция
Примечание: π записывается как pi; корень квадратный как sqrt().
Шаг 1. Введите в поля три уравнения.
Шаг 2. Нажмите кнопку “Решить систему”.
Шаг 3. Получите точный результат.
В калькулятор нужно вводить только латинские буквы и любые цифры с клавиатуры.
Видео:Одно уравнение и 3 неизвестныхСкачать

Что такое система из 3-х уравнений с 3-мя неизвестными
Решение систем из трёх уравнений с тремя неизвестными – это то же линейное уравнение, которое, чаще всего решается методом Крамера. Однако метод Крамера можно использовать только в том случае, если определитель системы не равняется нулю. Если же определитель системы равен нулю, тогда нельзя использовать этот метод.
Следуя теореме Крамера, в таких уравнениях может быть три случая:
- У системы уравнений есть всего навсего одно решение.
- У системы уравнений имеется бесконечное множество решений.
- У системы уравнений нет решений.
Средняя оценка 2.7 / 5. Количество оценок: 3
🎬 Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать

Решение симметричной системы трех уравнений с тремя неизвестными | Олимпиада по математикеСкачать

Решение матричных уравненийСкачать

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

Задача с тремя неизвестными. Советский детектив (1979)Скачать

Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

№ 10.2. Пример задачи с тремя неизвестными (фрагмент)Скачать

Уравнение с двумя неизвестными | Вещдок. Особый случай. Привет из прошлогоСкачать

Как решить систему линейных уравнений с тремя неизвестными!?!Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Решение системы уравнений с тремя переменнымиСкачать

Линейное уравнение с двумя переменными. 7 класс.Скачать








































































































